Bienvenido a Revelroom.ca, donde puedes obtener respuestas confiables y rápidas con la ayuda de nuestros expertos. Experimenta la conveniencia de obtener respuestas fiables a tus preguntas gracias a una vasta red de expertos. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable.
Sagot :
Para factorizar un polinomio y calcular sus raíces vamos a seguir los siguientes pasos, cuando sean posibles:
Extraer factor común a un polinomio consiste en aplicar la propiedad distributiva.
a · x + b · x + c · x = x (a + b + c)
Una raíz del polinomio será siempre x = 0
Descomponer en factores sacando factor común y hallar las raíces de:1 x3 + x2 = x2 (x + 1)
La raíces son: x = 0 y x = − 1
2 2x4 + 4x2 = 2x2 (x2 + 2)
Sólo tiene una raíz X = 0; ya que el polinomio, x2 + 2, no tiene ningún valor que lo anule; debido a que al estar la x al cuadrado siempre dará un número positivo, por tanto es irreducible.
3 x2 − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b)
La raíces son x= a y x = b.
2 1Diferencia de cuadrados
Una diferencia de cuadrados es igual a suma por diferencia.
a2 − b2 = (a + b) · (a − b)
Descomponer en factores y hallar las raíces1 x2 − 4 = (X + 2) · (X − 2)
Las raíces son X = − 2 y X = 2
2 x4 − 16 = (x2 + 4) · (x2 − 4) = (X + 2) · (X − 2) · (x2 + 4)
Las raíces son X = − 2 y X = 2
2Trinomio cuadrado perfectoUn trinomio cuadrado perfecto es igual a un binomio al cuadrado.
a2 ± 2 a b + b2 = (a ± b)2
Descomponer en factores los trinomio cuadrados perfectos y hallar sus raícesLa raíz es x = − 3.
La raíz es x = 2.
3ºTrinomio de segundo grado
Para descomponer en factores el trinomio de segundo grado P(x) = a x2 + bx +c , se iguala a cero y se resuelve la ecuación de 2º grado. Si las soluciones a la ecuación son x1 y x2, el polinomio descompuesto será:
a x2 + bx +c = a · (x -x1 ) · (x -x2 )
Descomponer en factores los trinomios de segundo grado y hallar sus raícesLas raíces son x = 3 y x = 2.
Las raíces son x = 3 y x = − 2.
Descomponer en factores los trinomios de cuarto grado de exponentes pares y hallar sus raícesx4 − 10x2 + 9
x2 = t
x4 − 10x2 + 9 = 0
t2 − 10t + 9 = 0
x4 − 10x2 + 9 = (x + 1) · (x − 1) · (x + 3) · (x − 3)
x4 − 2x2 − 3
x2 = t
t2 − 2t − 3 = 0
x4 − 2x2 + 3 = (x2 + 1) · (x + ) · (x − )
4º Factorización de un polinomio de grado superior a dos
Utilizamos el teorema del resto y la regla de Ruffini.
Descomposición de un polinomio de grado superior a dos y cálculo de sus raícesP(x) = 2x4 + x3 − 8x2 − x + 6
1Tomamos los divisores del término independiente: ±1, ±2, ±3.
2Aplicando el teorema del resto sabremos para que valores la división es exacta.
P(1) = 2 · 14 + 13 − 8 · 12 − 1 + 6 = 2 + 1− 8 − 1 + 6 = 0
3Dividimos por Ruffini.
4Por ser la división exacta, D = d · c
(x −1) · (2x3 + 3x2 − 5x − 6 )
Una raíz es x = 1.
Continuamos realizando las mismas operaciones al segundo factor.
Volvemos a probar por 1 porque el primer factor podría estar elevado al cuadrado.
P(1) = 2 · 13 + 3 · 12 − 5 · 1 − 6≠ 0
P(−1) = 2 · (− 1)3 + 3 ·(− 1)2 − 5 · (− 1) − 6= −2 + 3 + 5 − 6 = 0
(x −1) · (x +1) · (2x2 +x −6)
Respuesta:
Una pregunta de 2012 :0 Que tiempos
Explicación paso a paso:
Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Tu visita es muy importante para nosotros. No dudes en volver para obtener respuestas fiables a cualquier pregunta que tengas. Gracias por usar Revelroom.ca. Vuelve para obtener más conocimientos de nuestros expertos.