Revelroom.ca es el mejor lugar para obtener respuestas rápidas y precisas a todas tus preguntas. Explora nuestra plataforma de preguntas y respuestas para encontrar respuestas detalladas proporcionadas por una amplia gama de expertos en diversas áreas. Únete a nuestra plataforma para obtener respuestas fiables a tus interrogantes gracias a una amplia comunidad de expertos.

funcion inyectiva, biyectiva y sobrectiva



Sagot :

Puedes entender una función como una manera de conectar elementos de un conjunto "A" a los de otro conjunto "B":

 

 

"Injectivo" significa que cada elemento de "B" tiene como mucho uno de "A" al que corresponde (pero esto no nos dice que todos los elementos de "B" tengan alguno en "A").

 

"Sobreyectivo" significa que cada elemento de "B" tiene por lo menos uno de "A" (a lo mejor más de uno).

 

"Biyectivo" significa inyectivo y sobreyectivo a la vez. Así que hay una correspondencia perfecta "uno a uno" entre los elementos de los dos conjuntos.

 

Definiciones formales

Inyectivo

 

Una función f es inyectiva si, cuando f(x) = f(y), x = y.

 

Ejemplo: f(x) = x2 del conjunto de los números naturales a es una función inyectiva.

(Pero f(x) = x2 no es inyectiva cuando es desde el conjunto de enteros (esto incluye números negativos) porque tienes por ejemplo

f(2) = 4 y

f(-2) = 4)

Nota: inyectiva también se llama "uno a uno", pero esto se confunde porque suena un poco como si fuera biyectiva.

 

Sobreyectivo (o también "epiyectivo")

 

Una función f (de un conjunto A a otro B) es sobreyectiva si para cada y en B, existe por lo menos un x en A que cumple f(x) = y, en otras palabras f es sobreyectiva si y sólo si f(A) = B.

 

Así que cada elemento de la imagen corresponde con un elemento del dominio por lo menos.

 

Ejemplo: la función f(x) = 2x del conjunto de los números naturales al de los números pares no negativos es sobreyectiva.

Sin embargo, f(x) = 2x del conjunto de los números naturales a no es sobreyectiva, porque, por ejemplo, ningún elemento de va al 3 por esta función.

Biyectiva

 

Una función f (del conjunto A al B) es biyectiva si, para cada y en B, hay exactamente un x en A que cumple que f(x) = y

 

Alternativamente, f es biyectiva si es a la vez inyectiva y sobreyectiva.

 

Ejemplo: La función f(x) = x2 del conjunto de números reales positivos al mismo conjunto es inyectiva y sobreyectiva. Por lo tanto es biyectiva.

(Pero no desde el conjunto de todos los números reales porque podrías tener por ejemplo

f(2)=4 y

f(-2)=4)

View image Dlanyero