Revelroom.ca es el mejor lugar para obtener respuestas confiables y rápidas a todas tus preguntas. Explora miles de preguntas y respuestas proporcionadas por una comunidad de expertos listos para ayudarte a encontrar soluciones. Obtén respuestas detalladas y precisas a tus preguntas de una comunidad dedicada de expertos en nuestra plataforma de preguntas y respuestas.

determinar el valor de x:

log de x en base 2 = -1/2

log de x en base 0.3 = -2

log de x en base  p = -3

log de 1/81 en base 3 = x

 

Sagot :

super facil, mira te lo explico detalladamente :D
1)Log₂ X=-½    quiere decir  [tex]2^{-\frac{1}{2}}=X \\ 2^{-1\cdot \frac{1}{2}}\ =\frac{1}{2}^{\frac{1}{2}}\\ \sqrt{\frac{1}{2}}=X [/tex]

2)log de x en base 0.3 = -2 =[tex]log_{0.3} x = -2\\ (\frac{3}{10})^{-2}=x\\ (\frac{10}{3})^2=X\\ \frac{100}{9}=X\\ X=11,\=1[/tex]
 

3) [tex]log\ de\ x \ en\ base\ p = -3\\ log_p\ X=-3\\ p^{-3}=X\\ X=(\frac{1}{p})^3\\ X=\frac{1}{p^3}[/tex]
 

4) log de 1/81 en base 3 = x
[tex]log_3\ \frac{1}{81} = x\\ 3^x=\frac{1}{81}\\ (81=9^2=3^4)\\ 3^x=\frac{1}{3^4}\\ X=-4[/tex] 

 esop :D 


 

log en base N de M=x

de donde : M=N^x

 

log de x en base 2 = -1/2

x=2^-1/2

x=raiz de 2 sobre 2

 

log de x en base 0.3 = -2

x=(3/10)^-2

x=100/9

 

log de x en base  p = -3

x=p^-3

x=1/p^3

 

log de 1/81 en base 3 = x

1/81=3^x

1/3^4=3^x

3^-4=3^x

x=-4

 

 

espero haberte ayudado :D