Ruik
Answered

Revelroom.ca es el mejor lugar para obtener respuestas confiables y rápidas a todas tus preguntas. Encuentra soluciones detalladas a tus preguntas con la ayuda de una amplia gama de expertos en nuestra amigable plataforma de preguntas y respuestas. Descubre respuestas detalladas a tus preguntas gracias a una vasta red de profesionales en nuestra completa plataforma de preguntas y respuestas.

suma de vectores metodo analitico

Sagot :

Suma de Vectores. Método Analítico

• Suma de Componentes
La suma gráfica de vectores con regla y transportador a veces no tiene la exactitud suficiente y no es útil cuando los vectores están en tres dimensiones.

Sabemos, de la suma de vectores, que todo vector puede descomponerse como la suma de otros dos vectores, llamados las componentes vectoriales del vector original. Para sumarlos, lo usual es escoger las componentes sumando a lo largo de dos direcciones perpendiculares entre sí.

Ejemplo Suma Vectores: suponga un vector V cualquiera

Trazamos ejes coordenados x y con origen en la cola del vectorV. Se trazan perpendiculares desde la punta del vector V a los ejes x y y determinándose sobre el eje x la componente vectorialVx y sobre el eje y la componente vectorial Vy.

Notemos que V = Vx + Vy de acuerdo al método del paralelógramo.

Las magnitudes de Vx y Vy, o sea Vx y Vy, se llaman componentes y son números, positivos o negativos según si apuntan hacia el lado positivo o negativo de los ejes x y y.

Notar también que Vy = Vsen y Vx = Vcos

• Suma de Vectores Unitarios
Frecuentemente las cantidades vectoriales se expresan en términos de  unitarios. Un vector unitario es un vector sin dimensiones que tiene magnitud igual a uno. Sirven para especificar una dirección determinada. Se usan los símbolos ij yk para representar vectores unitarios que apuntan en las direcciones x, y y z positivas, respectivamente.

Ahora V puede escribirse
V = Ax i + Ay j 
Si necesitamos sumar el vector A = Ax i + Ay j con el vector
B = Bx i + By j escribimos
R = A + B = Ax i + Ay j + Bx i + By j = (Ax + Bx)i + (Ay + By)j 
Las componentes de R (=A + B) son Rx = Ax + Bx y Ry = Ay + By

Suma Grafica, Ir a Pagina Inicio

 

Problema Ilustratorio
El siguiente ejercicio es para aclarar el uso de vectores unitarios en este método analítico.

Un auto recorre 20 km hacia el Norte y después 35 km en una dirección 60º al Oeste del Norte. Determine magnitud y dirección del desplazamiento resultante del auto.

Hacemos un diagrama:

Expresando los dos desplazamientos componentes como A y B, indicados en la figura, y usando  unitarios, tenemos:
R = A + BR es el vector resultante buscado, cuya magnitud se 
denota  y cuya dirección puede determinarse calculando el ángulo .
A = 20 km j, (apunta hacia el Norte).
B debemos descomponerlo en componentes x e y (ó i y j )

B = -(35 km)sen60ºi + (35 km)cos60ºj = -30.3 kmi + 17.5 kmj

Luego,
R = 20 kmj - 30.3 kmi + 17.5 kmj = 37.5j - 30.3i.
La magnitud se obtiene de

 2 = (37.5km)2 + (30.3km)2   = 48.2 km

La dirección de R la determinaremos calculando el ángulo . 
En el triángulo formado por cateto opuesto 30.3 y cateto adyacente 37.5, tg = 30.3/37.5  = arctg(30.3/37.5) = 38.9º.

para sumar vectores existen varios metodos pero el mas utilizado es el de las componnetes

 

este se trata de hallar las componentes en x y en y  para despues hacer sumar todoas las eque estan en x y e igual maneras las que estan en y

 

para despues realizar la ecuacion de pitagoras de ñla hipotenusa y hallar el modulo

 

con estas mismas componentes con trigonometria se halla el angulo