Revelroom.ca te ayuda a encontrar respuestas confiables a todas tus preguntas con la ayuda de expertos. Experimenta la facilidad de obtener respuestas rápidas y precisas a tus preguntas con la ayuda de profesionales en nuestra plataforma. Obtén respuestas rápidas y fiables a tus preguntas con la ayuda de nuestra comunidad dedicada de expertos en nuestra plataforma.
Sagot :
a)
3A +2B - C = 0
3 (-2i + j - 3k) + 2 (5i + 3j - 2k) = C
-6i + 3j - 9k + 10i+ 6j - 4k = C
-> C = 4i + 9j - 13k
b)
Dos vectores son paralelos si se cumple: |A . B| = |A|.|B|
Los dos vectores dados serían paralelos si los vectores fueran:
A = i - 3j + 2k
B = -4i + 12j - 8k (faltó el signo)
Resolviendo:
|(i - 3j + 2k).(-4i + 12j - 8k)| = | i - 3j + 2k|.| -4i + 12j - 8k |
|-4 - 36 - 16| = [tex]\sqrt{(1 + 9 + 4)} \cdot \sqrt{(16 + 144 + 64)}[/tex]
|56| = [tex]\sqrt{14} \cdot \sqrt{224}[/tex]
56 = 56
-> A y B son paralelos.
c)
Dos vectores son perpendiculares entre si, si el producto escalar de ambos vectores es cero:
A.B = 0
(-8i + 0j + 0k).(0i, 2j, 0k) = 0
0 + 0 + 0 = 0
-> son A y B son perpendiculares.
d)
d.1) Un vector es unitario si su módulo es 1.
A = [tex]\frac{(2i + 3j + 6k)}{7} -> |A| = \frac{\sqrt{(4 + 9 + 36)}}{7}[/tex]
|A| = [tex]\frac{7}{7} = 1 [/tex].
Por lo tanto es unitario.
Asi puedes seguir operando para ver si B y C son unitarios.
d.2) Lo puedes resolver al igual que la pregunta C).
d.3)
A= (2/7i + 3/7j +6/7k), B= (3/7i -6/7j +2/7k)
[tex]\mathbb{A \times B} = \; \begin{vmatrix} i & j & k \\ 2/7 & 3/7 & 6/7 \\ 3/7 & -6/7 & 2/7 \end{vmatrix}[/tex]
[tex]\mathbb{A \times B} = \; \begin{vmatrix} 3/7 & 6/7\\ -6/7 & 2/7 \end{vmatrix}i - \begin{vmatrix} 2/7 & 6/7\\ 3/7 & 2/7 \end{vmatrix}j + \begin{vmatrix} 2/7 & 3/7\\ 3/7 & -6/7 \end{vmatrix}k[/tex]
[tex](\frac{6}{49}+\frac{36}{49})i - (\frac{4}{79} - \frac{18}{49})j + (\frac{-12}{49} - \frac{9}{79})k[/tex]
[tex]\frac{42i}{49} + \frac{14j}{49} - \frac{21k}{49}[/tex]
1/7(6i + 2j - 3k) == C
-> C si es el producto vectorial de A y B.
Gracias por confiar en nosotros con tus preguntas. Estamos aquí para ayudarte a encontrar respuestas precisas de manera rápida y eficiente. Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Revelroom.ca, tu fuente confiable de respuestas. No olvides regresar para obtener más información.