Bienvenido a Revelroom.ca, donde puedes obtener respuestas rápidas y precisas con la ayuda de expertos. Obtén respuestas detalladas y precisas a tus preguntas de una comunidad dedicada de expertos. Conéctate con una comunidad de expertos dispuestos a ofrecer soluciones precisas a tus preguntas de manera rápida y eficiente en nuestra amigable plataforma de preguntas y respuestas.
Sagot :
Lo que se nos esta pidiendo en este problema es demostrar por medio de la aplicación de Identidades Trigonométricas que se puede desarrollar el lado izquierdo de cada ecuación hasta llegar al lado derecho de la igualdad. Sabiendo esto, procedemos de la siguiente manera:
1)
[tex]Cos(A)Cotg(A)+Sen(A)=Cos(A)\frac{Cos(A)}{Sen(A)}+Sen(A)=\frac{Cos^{2}(A)+Sen^{2}(A)}{Sen(A)}[/tex]
En este punto, tomamos en cuenta que [tex]Sen^{2}(A)+Cos^{2}(A)=1[/tex], entonces
[tex]\frac{Cos^{2}(A)+Sen^{2}(A)}{Sen(A)}=\frac{1}{Sen(A)}=Csc(A)[/tex]
Por lo tanto, [tex]Cos(A)Cotg(A)+Sen(A)=Csc(A)[/tex]
2)
[tex]Csc(A)Sec(A)-Tan(A)=\frac{1}{Sen(A)}\frac{1}{Cos(A)}-\frac{Sen(A)}{Cos(A)}=\frac{Cos(A)-Sen^{2}(A)Cos(A)}{Sen(A)Cos^{2}(A)}\\\\=\frac{Cos(A)(1-Sen^{2}(A))}{Sen(A)Cos^{2}(A)}=\frac{Cos^{2}(A)}{Sen(A)Cos(A)}=\frac{Cos(A)}{Sen(A)}=Cotg(A)[/tex]
Por lo tanto, se cumple que [tex]Csc(A)Sec(A)-Tan(A)=Cotg(A)[/tex]
3)
[tex]Sec(A)Tan(A)Csc(A)=\frac{1}{Cos(A)}\frac{Sen(A)}{Cos(A)}\frac{1}{Sen(A)}=\frac{1}{Cos^{2}(A)}=Sec^{2}(A)[/tex]
Pero por Identidades Trigonométricas sabemos que [tex]Sec^{2}(A)=Tan^{2}(A)+1[/tex]
Por lo tanto, se cumple que [tex]Sec(A)Tan(A)Csc(A)=Tan^{2}(A)+1[/tex]
4)
[tex]Sen(A)Cos(A)Tan(A)=Sen(A)Cos(A)\frac{Sen(A)}{Cos(A)}=Sen^{2}(A)=1-Cos^{2}(A)[/tex]
5)
[tex]Cotg(A)Sec^{2}(A)-Cotg(A)[/tex]
En este caso, volvemos a aplicar la identidad [tex]Sec^{2}(A)=Tan^{2}(A)+1[/tex], de esta forma
[tex]Cotg(A)Sec^{2}(A)-Cotg(A)=Cotg(A)(Tan^2(A)+1)-Cotg(A)\\\\=Cotg(A)Tan^2(A)+Cotg(A)-Cotg(A)=\frac{1}{Tan(A)}Tan^{2}(A)=Tan(A)[/tex]
6)
[tex]Sen(A)+Sen(A)Cotg^{2}(A)=Sen(A)(1+Cotg^{2}(A))[/tex]
Ahora usaremos la Identidad Trigonométrica [tex]Csc^{2}(A)=Cotg^2(A)+1[/tex], por lo que
[tex]Sen(A)(1+Cotg^{2}(A))=Sen(A)Csc^{2}(A)=Sen(A)\frac{1}{Sen^2(A)}=Csc(A)[/tex]
Por lo tanto, se cumple que [tex]Sen(A)+Sen(A)Cotg^{2}(A)=Csc(A)[/tex]
7)
[tex]Tan(A)+Cotg(A)=\frac{Sen(A)}{Cos(A)}+\frac{Cos(A)}{Sen(A)}=\frac{Sen^2(A)+Cos^2(A)}{Sen(A)Cos(A)}=\frac{1}{Sen(A)Cos(A)}\\\\=Sec(A)Csc(A)[/tex]
8)
[tex]Tan(A)+Cotg(A)=\frac{Sen(A)}{Cos(A)}+\frac{Cos(A)}{Sen(A)}=\frac{Sen^2(A)+Cos^2(A)}{Sen(A)Cos(A)}=\frac{1}{Sen(A)Cos(A)}[/tex]
En este punto, multiplicaremos y dividiremos la expresión por Sen(A), de esta forma
[tex]=\frac{1}{Sen(A)Cos(A)}=\frac{1}{Sen(A)Cos(A)}\frac{Sen(A)}{Sen(A)}=\frac{Sen(A)}{Cos(A)} \frac{1}{Sen^2(A)}=Tan(A)Csc^2(A)[/tex]
Por lo tanto, se cumple que [tex]Tan(A)+Cotg(A)=Tan(A)Csc^2(A)[/tex]
9)
[tex]Cos^2(A)-Sen^2(A)=Cos^2(A)-(1-Cos^2(A))=2Cos^2(A)-1\\\\=2(1-Sen^2(A))-1=2-2Sen^2(A)-1=1-2Sen^2(A)[/tex]
10)
[tex]Tan^2(A)Sec^2(A)-tan^4(A)=\frac{Sen^2(A)}{Cos^2(A)}\frac{1}{Cos^2(A)}-\frac{Sen^4(A)}{Cos^4(A)}=\frac{Sen^2(A)}{Cos^4(A)}-\frac{Sen^4(A)}{Cos^4(A)}\\\\=\frac{Sen^2(A)}{Cos^4(A)}(1-Sen^2(A))=\frac{Sen^2(A)Cos^2(A)}{Cos^4(A)}=\frac{Sen^2(A)}{Cos^2(A)}=Tan^2(A)[/tex]
Por lo tanto, se cumple que [tex]Tan^2(A)Sec^2(A)-tan^4(A)=Tan^2(A)[/tex]
Si quieres saber más sobre el tema, te invita a revisar el siguiente vínculo
https://brainly.lat/tarea/12056694
Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Gracias por usar nuestro servicio. Siempre estamos aquí para proporcionar respuestas precisas y actualizadas a todas tus preguntas. Regresa a Revelroom.ca para obtener las respuestas más recientes e información de nuestros expertos.