Bienvenido a Revelroom.ca, donde puedes obtener respuestas confiables y rápidas con la ayuda de nuestros expertos. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones precisas a tus interrogantes de manera rápida y eficiente. Obtén respuestas rápidas y fiables a tus preguntas con la ayuda de nuestra comunidad dedicada de expertos en nuestra plataforma.
Sagot :
Al hablar de la diagonal de un rectángulo no apoyaremos en el teorema de Pitagoras, para encontrar los lados y con ellos las dimensiones del rectángulo, es decir, su área y perímetro.
Sean los lados del rectángulo: x y x-2
Por el Teorema de Pitágoras:
El cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos (Cuando el triángulo es rectángulo)
[tex]10^2=X^2 + (X-2)^2 [/tex]
[tex] 100=X^2 + X^2 - 4X + 4 [/tex]
esto se reduce a: [tex] 2X^2 - 4X - 96=0 [/tex]
La resolvente de una ecuación de 2do grado es:
[tex]x=\frac{-b +/- \sqrt{b^2-4ac}}{2a}[/tex]
De donde se tiene que [tex]X = \frac {-(-4) +/- \sqrt{(-4)^2 - 4(2)(-96)}}{2(2)}[/tex]
Entonces [tex]X = \frac{4 +/- \sqrt{784}}{4}[/tex]
De donde surgen las 2 raíces para X:
X1=8 y X2=- 6, donde descartaremos a X2, por ser negativa.
Entonces los lados del rectángulo son: x=8; y=(8-2)=6
Pero nos solicitan las dimensiones del rectángulo. Así tenemos que:
Área el rectángulo A=BxH, donde B=base, H=Altura
A=8 cm x 6 cm = 48 cm^2,
Pudiéramos también calcular el perímetro del rectángulo, que se define como la suma de sus lados:
P=2*8+6*2=16+12=28 cm
Entonces la respuesta a la pregunta es:
Lados: x=8; y=6
Área del rectángulo, A=48 cm2
Perímetro del rectángulo, P=28 cm
Espero que te haya sido útil la respuesta!
Sean los lados del rectángulo: x y x-2
Por el Teorema de Pitágoras:
El cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos (Cuando el triángulo es rectángulo)
[tex]10^2=X^2 + (X-2)^2 [/tex]
[tex] 100=X^2 + X^2 - 4X + 4 [/tex]
esto se reduce a: [tex] 2X^2 - 4X - 96=0 [/tex]
La resolvente de una ecuación de 2do grado es:
[tex]x=\frac{-b +/- \sqrt{b^2-4ac}}{2a}[/tex]
De donde se tiene que [tex]X = \frac {-(-4) +/- \sqrt{(-4)^2 - 4(2)(-96)}}{2(2)}[/tex]
Entonces [tex]X = \frac{4 +/- \sqrt{784}}{4}[/tex]
De donde surgen las 2 raíces para X:
X1=8 y X2=- 6, donde descartaremos a X2, por ser negativa.
Entonces los lados del rectángulo son: x=8; y=(8-2)=6
Pero nos solicitan las dimensiones del rectángulo. Así tenemos que:
Área el rectángulo A=BxH, donde B=base, H=Altura
A=8 cm x 6 cm = 48 cm^2,
Pudiéramos también calcular el perímetro del rectángulo, que se define como la suma de sus lados:
P=2*8+6*2=16+12=28 cm
Entonces la respuesta a la pregunta es:
Lados: x=8; y=6
Área del rectángulo, A=48 cm2
Perímetro del rectángulo, P=28 cm
Espero que te haya sido útil la respuesta!
Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Agradecemos tu visita. Nuestra plataforma siempre está aquí para ofrecer respuestas precisas y fiables. Vuelve cuando quieras. Revelroom.ca, tu sitio de confianza para respuestas. No olvides regresar para obtener más información.