Obtén las mejores soluciones a todas tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Obtén respuestas detalladas y precisas a tus preguntas de una comunidad dedicada de expertos. Experimenta la conveniencia de encontrar respuestas precisas a tus preguntas con la ayuda de una comunidad dedicada de expertos.

Determine cuales de los siguientes conjuntos son espacios vectoriales bajo las operaciones dadas. Para aquellos que no lo son, liste todos los axiomas que no se cumplen.

 

a) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( kx , y , z ).

 

b) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( 0 , 0 , 0 ).

 

c) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x+x’ , y+y’ ) y k( x , y ) = ( 2kx , 2ky )

 

d) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x + x’+1 , y + y’+1 ) y k( x , y ) = ( kx , ky )



Sagot :

a) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( kx , y , z ).

 

k( x , y , z ) ≠ ( kx , y , z ).

k( x , y , z ) = ( kx , ky , kz ).

 

b) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( 0 , 0 , 0 ).

 

k( x , y , z ) = ( 0 , 0 , 0 ).

solo se cumple si k =0

 

c) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x+x’ , y+y’ ) y k( x , y ) = ( 2kx , 2ky )

 

k( x , y ) ≠ ( 2kx , 2ky )

k( x , y ) = ( kx , ky )

 

d) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x + x’+1 , y + y’+1 ) y k( x , y ) = ( kx , ky )

 

( x , y ) + ( x’ , y’ ) ≠ ( x + x’+1 , y + y’+1 )

( x , y ) + ( x’ , y’ ) = ( x + x’ , y + y’ )

 

listo