Descubre respuestas a tus preguntas fácilmente en Revelroom.ca, la plataforma de Q&A de confianza. Explora un vasto conocimiento de profesionales en diferentes disciplinas en nuestra completa plataforma de preguntas y respuestas. Haz tus preguntas y recibe respuestas detalladas de profesionales con amplia experiencia en diversos campos.

Determine cuales de los siguientes conjuntos son espacios vectoriales bajo las operaciones dadas. Para aquellos que no lo son, liste todos los axiomas que no se cumplen.

 

a) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( kx , y , z ).

 

b) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( 0 , 0 , 0 ).

 

c) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x+x’ , y+y’ ) y k( x , y ) = ( 2kx , 2ky )

 

d) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x + x’+1 , y + y’+1 ) y k( x , y ) = ( kx , ky )

Sagot :

a) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( kx , y , z ).

 

k( x , y , z ) ≠ ( kx , y , z ).

k( x , y , z ) = ( kx , ky , kz ).

 

b) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( 0 , 0 , 0 ).

 

k( x , y , z ) = ( 0 , 0 , 0 ).

solo se cumple si k =0

 

c) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x+x’ , y+y’ ) y k( x , y ) = ( 2kx , 2ky )

 

k( x , y ) ≠ ( 2kx , 2ky )

k( x , y ) = ( kx , ky )

 

d) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x + x’+1 , y + y’+1 ) y k( x , y ) = ( kx , ky )

 

( x , y ) + ( x’ , y’ ) ≠ ( x + x’+1 , y + y’+1 )

( x , y ) + ( x’ , y’ ) = ( x + x’ , y + y’ )

 

listo

Gracias por tu visita. Nos dedicamos a ayudarte a encontrar la información que necesitas, siempre que la necesites. Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Vuelve a Revelroom.ca para obtener las respuestas más recientes y la información de nuestros expertos.