Obtén respuestas rápidas y precisas a todas tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Encuentra respuestas rápidas y fiables a tus preguntas gracias a la asistencia de expertos experimentados en nuestra plataforma amigable y fácil de usar. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable.

Determine cuales de los siguientes conjuntos son espacios vectoriales bajo las operaciones dadas. Para aquellos que no lo son, liste todos los axiomas que no se cumplen.

 

a) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( kx , y , z ).

 

b) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( 0 , 0 , 0 ).

 

c) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x+x’ , y+y’ ) y k( x , y ) = ( 2kx , 2ky )

 

d) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x + x’+1 , y + y’+1 ) y k( x , y ) = ( kx , ky )



Sagot :

a) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( kx , y , z ).

 

k( x , y , z ) ≠ ( kx , y , z ).

k( x , y , z ) = ( kx , ky , kz ).

 

b) El conjunto de todas las ternas ordenadas de números reales ( x , y , z ) con las operaciones ( x , y , z ) + ( x’ , y’ , z’ ) = ( x+x’ , y+y’ , z+z’ ) y k( x , y , z ) = ( 0 , 0 , 0 ).

 

k( x , y , z ) = ( 0 , 0 , 0 ).

solo se cumple si k =0

 

c) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x+x’ , y+y’ ) y k( x , y ) = ( 2kx , 2ky )

 

k( x , y ) ≠ ( 2kx , 2ky )

k( x , y ) = ( kx , ky )

 

d) El conjunto de todas las parejas de números reales ( x , y ) con las operaciones ( x , y ) + ( x’ , y’ ) = ( x + x’+1 , y + y’+1 ) y k( x , y ) = ( kx , ky )

 

( x , y ) + ( x’ , y’ ) ≠ ( x + x’+1 , y + y’+1 )

( x , y ) + ( x’ , y’ ) = ( x + x’ , y + y’ )

 

listo