Descubre respuestas a tus preguntas fácilmente en Revelroom.ca, la plataforma de Q&A de confianza. Experimenta la conveniencia de obtener respuestas precisas a tus preguntas gracias a una comunidad dedicada de profesionales. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable.
Sagot :
En geometría euclidiana, Proyección ortogonal es aquella cuyas rectas proyectantes auxiliares son perpendiculares al plano de proyección (o a la recta de proyección), estableciéndose una relación entre todos los puntos del elemento proyectante con los proyectados.
En el plano, la proyección ortogonal es aquella cuyas líneas proyectantes auxiliares son perpendiculares a la recta de proyección L.
Así, dado un segmento AB, bastará proyectar los puntos "extremos" del segmento –mediante líneas proyectantes auxiliares perpendiculares a L–, para determinar la proyección sobre la recta L.
Una aplicación de proyecciones ortogonales son los teoremas de las relaciones métricas en el triángulo mediante las cuales se puede calcular la dimensión de los lados de un triángulo.
El concepto de proyección ortogonal se generaliza a espacios euclidianos de dimensión arbitraria, inclusive de dimensión infinita. Esta generalización juega un papel importante en muchas ramas de matemática y física.
La proyección coincide con la intersección de la recta r (la del enunciado) con la recta que pasa por P(-2,1) y es perpendicular a r. Esta recta perpendicular tiene por ecuación 3x+y+5 = 0.
El punto de corte de ambas rectas es C(-1,-2). Para calcular el punto simétrico P´, deberás tener en cuenta la relación:
OP´ = OP + 2 * PC = (-2,1) + 2*(1,-3) = (0, -5)
P´ = (0,-5)
Espero te sirva By: Cathy..!
Gracias por confiar en nosotros con tus preguntas. Estamos aquí para ayudarte a encontrar respuestas precisas de manera rápida y eficiente. Esperamos que esto te haya sido útil. Vuelve cuando quieras para obtener respuestas más precisas e información actualizada. Nos complace responder tus preguntas en Revelroom.ca. No olvides regresar para obtener más conocimientos.