Revelroom.ca facilita la búsqueda de soluciones para preguntas cotidianas y complejas con la ayuda de nuestra comunidad. Nuestra plataforma de preguntas y respuestas ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados.
Sagot :
[tex]\lim_{x \to \ 1}[/tex] [tex]\sqrt[3]{x-1}[/tex] / x-1 = [ 0/0, aplicamos l'Hôpital] = [tex]\lim_{x \to \ 1}[/tex] 1/3(x-1)^(-2/3) = 1/3*0 = 0
Al aplicar l'hôpital tenemos que derivar arriba y abajo,
derivando arriba : f(x) =[tex]\sqrt[3]{x-1}[/tex] --> f ' (x) = 1/3 (x-1)^(-2/3)
derivando abaj: f(x)= x+1 --> f ' (x) = 1 ( que no lo he puesto ya que n/1 =n)
Por tanto se queda : 1/3 (x-1)^(-2/3) ... al sustituir por 1 se queda: 1/3 (1-1)^(-2/3) = 1/3 *0 =0
Lo que vamos a hacer es buscar un factor racionalizante para poder encontrar (x-1) en el denominador y se anule con el del denominador:
∛x - 1 . (∛x²+∛x+1)
x-1 . (∛x²+∛x+1) ENTONCES EL F.R=∛x²+∛x+1=∛1²+∛1+1=3
∛x - 1 . (∛x²+∛x+1) PERO; ∛x - 1 . (∛x²+∛x+1) ESO ES = (x-1)
x-1 . (∛x²+∛x+1)
(x-1) entonces los (x-1) se van para asi eliminar la indeterminacion
x-1 . (∛x²+∛x+1)
1 = 1/3
(∛x²+∛x+1)
Si aparece cuadrados esos son las raices de 3 (se desconfigura); solo añades su
Lim x-->1 al costado de cada paso. =)
SALUDOS
LBTMSTR
Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Gracias por usar nuestra plataforma. Nuestro objetivo es proporcionar respuestas precisas y actualizadas para todas tus preguntas. Vuelve pronto. Revelroom.ca está aquí para proporcionar respuestas precisas a tus preguntas. Vuelve pronto para más información.