Kcawi
Answered

Obtén respuestas rápidas y precisas a todas tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Obtén soluciones rápidas y fiables a tus preguntas de una comunidad de expertos experimentados en nuestra plataforma. Explora un vasto conocimiento de profesionales en diferentes disciplinas en nuestra completa plataforma de preguntas y respuestas.

Sumas de Riemann f(x)=5x-6 intervalo [2,5] Por favor me pueden explicar como se realiza, ya que, al hacer las operaciones me sale un resultado y en la comprobación otra. Gracias.

Sagot :

Eragon

intentemos haber jeje

primero ten en cuenta que el area seria el ancho por el alto

 

5-2=3/n partido en n por que depende que tan aproximado lo quieras

 

ahora como inicia en 2 seria

xi=2+3i/n

 

su altura seria la imagen de esta en la funcion

 

f(2+3i/n)=5(2+3i/n)-6=10+15i/n-6=15i/n+4

 

ahora planteas la sumatoria de eso

 

sumatoria((15i/n+4)(3/n))

sumatoria(45i/n^2+12/n)

separas las umatorias

 

45/n^2sumatoria(i)+12/nsumatoria(1)

 

sabes que i=n(n+1)/2  sustituimos y queda

45/n^2*(n(n+1)/2)+12/n*(n) simplificamos

45(n+1)/2n+12

calculas el limite cuando n tiende a infinito

 

45/2+12=69/2 y este es el area

si haces la integral da exactamente lo mismo

 

saludos

 

 

El área de la región es de 34.5 U²

Una integral es una suma de Riemman infinita, entonces como no tenemos el número de particiones hacemos infinitas particiones calculando la integral de f(x) = 5x - 6, en el intervalo dado:

[tex]\int\limits^5_2 {5x - 6} \, dx = (\frac{5x^{2}}{2}- 6x) |^{5}_{2} = (2.5x^{2} - 6x)|^{5}_{2} = 2.5*(5)^{2} - 6*5 - (2.5*(2)^{2} - 6*(2))[/tex]

[tex]2.5*25 - 30 - (2.5*4 - 12) = 62.5 - 30 - (10 - 12) = 32.5 + 2 = 34.5 U^{2}[/tex]

Puedes visitar: https://brainly.lat/tarea/13837193

View image mafernanda1008
Gracias por pasar por aquí. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Hasta pronto. Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Gracias por visitar Revelroom.ca. Vuelve pronto para más información útil y respuestas de nuestros expertos.