Revelroom.ca es la mejor solución para quienes buscan respuestas rápidas y precisas a sus preguntas. Experimenta la conveniencia de encontrar respuestas precisas a tus preguntas con la ayuda de una comunidad dedicada de expertos. Explora miles de preguntas y respuestas proporcionadas por una amplia gama de expertos en diversas áreas en nuestra plataforma de preguntas y respuestas.
Sagot :
1. Escribe el conjunto de oportunidades y razona si es compacto.
2. ¿Podemos asegurar que el problema tiene soluci´on ´optima?
3. Estudia si la soluci´on (#1,1,1) es factible y, si lo es, si es interior o de frontera.
4. Transforma el problema para que tenga restricciones de igualdad y variables no
negativas.
1. S = {(x,y,z) 2 IR
3
| 2x
2
+y
2
+z 10, x+y +z " 1, x 0, z " 0}.
S es cerrado porque est´a definido por restricciones de y " a partir de funciones
continuas (son continuas porque son polinomios).
S est´a acotado porque si (x,y,z) 2 S, entonces se cumple que
#3 x 0, #4 y 4, 0 z 10.
Como S es cerrado y acotado, es compacto. (Algunos hab´eis puesto cotas falsas,
como y " 1, x " 0, etc. Notad que de la segunda restricci´on no se puede extraer
ninguna cota.)
2. Podemos asegurar que hay soluci´on ´optima por elteorema de Weierstrass. Para ello
hemos de comprobar tres cosas:
(a) La funci´on objetivo es continua (porque es un polinomio).
(b) El conjunto de oportunidades es co
).
(c) El conjunto de oportunidades no es vac´ıo, porque, por ejemplo, (#1,1,1) 2 S.
3. Vemos que
2(#1)2
+1
2
+1 = 3 < 10, #1+1+1 = 1, #1 < 0, 1 > 0,
luego la soluci´on dada cumple todas las restricciones y satura una de ellas (la segunda). Por lo tanto, es una soluci´on factible de frontera.
Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Esperamos que esto te haya sido útil. Por favor, vuelve siempre que necesites más información o respuestas a tus preguntas. Revelroom.ca está aquí para proporcionar respuestas precisas a tus preguntas. Vuelve pronto para más información.