Descubre respuestas a tus preguntas fácilmente en Revelroom.ca, la plataforma de Q&A de confianza. Experimenta la facilidad de obtener respuestas rápidas y precisas a tus preguntas con la ayuda de profesionales en nuestra plataforma. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones a tus preguntas de manera rápida y precisa.

Hallar la Ecuación de la recta si pasa por el punto P (a , b) y el otro punto de paso está dado por la intersección de las rectas

 

R1 = [tex]\frac{x}{a} + \frac{y}{b} = 1[/tex]

 

R2 = [tex]\frac{x}{b} + \frac{y}{a} = 1[/tex]

 

 

Bueno, Son 100 puntos para la solución. Les doy las gracias por adelantado a los que lo resuelvan.

 

Nota: (las respuestas estarán en seguimiento de cumplimiento de reglas)



Sagot :

Hallar la Ecuación de la recta si pasa por el punto P (a , b) y el otro punto de paso está dado por la intersección de las rectas

 

R1 = 

 

R2 = 

 

 

x........y.....

---- + ------= 1

a..........b

 

bx + ay

-------------= 1

...ab

 

bx + ay = 1 . ab

ay = ab - bx

y = -bx /a + ab/a

y = -bx/a + b  → R1

 

x........y.....

---- + ------= 1

b..........a

 

ax + by

------------ = 1

...ba

 

ax + by = ba

by = ba - ax

y = -ax/b + ba/b

y = -ax/b + a  → R2

 

interseccion de las rectas R1 y R2

y = -bx/a + b  → R1....... y = -ax/b + a  → R2

 

..........................y =y

........... -bx/a + b =-ax/b + a 

...........-bx/a +ax/b = a -b

...........x (-b/a + a/b) = a - b

...........x ((-b² + a²)/ab) = a - b

 

...................a - b

x = --------------------------

..........(-b² + a²)/ab

 

...........(a - b) ab

x = --------------------------

..........(-b² + a²)

 

...........(a - b) ab

x = --------------------------

..........(a -b)(a+b)

 

 

.......... ab

x = ----------------

..........(a + b)

 

 

y = -bx/a + b  → R1

 

........-bx

y =---------- + b

...........a

 

........-b(ab)

y =----------------------- + b

...........a (a+b)

 

........-b²a

y =----------------------- + b

...........a² + ab

 

........-b²a  + b(a² + ab)

y =-----------------------------

...........a² + ab

 

........-b²a  + ba² + ab²

y =-----------------------------

...........a² + ab

 

........... ba²

y =------------------

...........a (a+b)

 

........... ba

y =------------------

...........(a+b)

 

 

Punto 2 (x ; y )

punto 2 ( ab/(a + b) ;  ba/(a+b))

 

Ecuacion de la recta

Punto 1 (a, b)

Punto 2 (( ab/(a + b) ;  ba/(a+b))

 

pendiente = y2 - y1 / x2 - x1

 

.........................ba/(a+b) - b

pendiente = ---------------------

........................... ab/(a + b) - a

 

.........................(ba - b(a+b))/(a+b)

pendiente = -------------------------------

........................... (ab - a(a+b)/(a + b)

 

.........................(ba - ba - b²)

pendiente = -------------------------------

........................... (ab - a² - ab)

 

.................................. - b²

pendiente = --------------------

...................................  - a²

 

pendiente = b² /a²

 

ordenada al origen

y = pendiente x + ordenada

b - ((b²/a²) . a) = ordenada

b  - b² /a = ordenada

(ab - b²)/a = ordenada

 

la Ecuacion de la recta que pasa por el punto 1 y el punto 2

es

y = (b²/a²)x  + (ab - b²)a

 

 

espero que te sirva, salu2!!!!

Ok, primero busquemos una expresión para la pareja ordenada intersección de las dos rectas para encontrar otro punto por le que pase la recta en cuestión:

 

solucionemos entonces el sistema: (utilizaremos el método de reducción o resta)

Primero quitemos los fraccionarios en la primera multiplicando por el MCM que es ab:

bx + ay = ab

 

lo mismo con la segunda ecuacion:

ax + by = ab

 

multipliquemos la primera ecuación por a y la seungda por b:

 

abx + a^2 y = a^2b

abx + b^2y = ab^2

 

ahora restemos las anteriores ecuaciones para eliminar la incógnita x y otener uns ecuación para la incógnita y:

 

abx + a^2 y = a^2b

- abx - b^2y = -ab^2

--------------------------------

(a^2 - b^2)y= ab(a - b)

 

factoricemos la difeencia de cuadrados del lado izquierdo:

(a+b)(a-b)y=ab(a-b)

 

asumamos que  a es diferente de b entonces podemos simplificar dividiendo por (a-b):

(a+b)y=ab

despejemos y:

y=ab/(a+b)

 

sustituyamos esta y en la ecuación bx + ay = ab

 

bx + a(ab/(a+b)) = ab

bx = ab - a^2b/(a+b)

x= a - a^2/(a+b) =  [a(a+b) - a^2]/(a+b) = (a^2 + ab - a^2)/(a+b) = ab/(a+b)

 

bien encontramos que "x" y "y"son iguales y la pareja ordenada de interseccion es (ab/(a+b), ab/(a+b))

 

ahora, usemos la formula de la pendiente con los dos puntos que ahora tenemos por donde pasa la recta:

 

m=(y1-y0)/(x1-x0)  

donde

(x1,y1)-->(ab/(a+b) , ab/(a+b))  

(x0,y0) -->(a,b)

entonces: 

 

m=(ab/(a+b) - b)/(ab/(a+b) -a)

 

         (ab-b(a+b))/(a+b)

m= -----------------------------------

          (ab - a(a+b))/(a+b)

 

se simplifica el termino comun (a+b) :

 

         ab -ab -b^2               b^2

m= --------------------------   = ---------

          ab - a^2 - ab             a^2

 

bien ahora usemos la ecuacion de pendiente-punto para deducir la ecuación pendiente- intercepto:

 

y -y1 = m(x-x1)

 

y - b = (b^2/a^2)(x - a)

 

         b^2       b^2

y-b = ------x  - -----

         a^2         a

 

 

          b^2      b^2

y    = ------x  - -----   + b

         a^2         a

 

          b^2      b^2-ab

y    = ------x  - ----------

         a^2          a

 

o bien factorizando el numerador del segundo término:

   

          b^2      b(b-a)

y    = ------ x  - ----------

          a^2          a

 

o si se prefiere cambiando el signo del intercepto:

 

          b^2       b(a-b)

y    = ------ x + ----------

          a^2          a

 

esta es la ecuación de la recta pedida en su forma pendiente intercepto o forma estandar.

 

en su forma general  (Ax +By + C = 0) sería:

 

multiplicando todo por el MCM que es a^2:

 

a^2 y = b^2 x + ab(a-b)

 

pasando todo a un lado:

 

b^2 x  - a^2 y + ab(a-b) = 0