Bienvenido a Revelroom.ca, donde tus preguntas son respondidas por especialistas y miembros experimentados de la comunidad. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas precisas de una red de profesionales experimentados. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados.
Sagot :
Hola!!
Sea: x, la cantidad de grupos que pueden formarse de 6 integrantes tal que cada grupo tenga al menos un fubtolista, se cumplirá que:
x = Total de grupos de 6 personas - Total de grupos de 6 nadadores
• Calculamos el total de grupos que se pueden formar con 6 personas de un total de 12 (entre nadadores y fubtolistas)
[tex]C^{12}_{6} = \frac{12!}{6!(12-6)!} = \frac{12x11x10x9x8x7x6!}{6!*6x5x4x3x2x1} \ \ C^{12}_6 = 924[/tex]
• Calculamos el total de grupos que se pueden formar con 6 nadadores de un total de 8 (nadadores).
[tex]C^{8}_{6} = \frac{8!}{6!(8-6)!} = \frac{8x7x6!}{6!*2x1} \ \ C^{8}_6 = 28[/tex]
Luego, reemplazando:
x = 924 - 28
x = 896
Respuesta: Se pueden formar 896 grupos de 6 integrantes, tal que cada grupo tenga por lo menos a un fubtolista.
Eso es todo! Saludos! Jeizon1L
Sea: x, la cantidad de grupos que pueden formarse de 6 integrantes tal que cada grupo tenga al menos un fubtolista, se cumplirá que:
x = Total de grupos de 6 personas - Total de grupos de 6 nadadores
• Calculamos el total de grupos que se pueden formar con 6 personas de un total de 12 (entre nadadores y fubtolistas)
[tex]C^{12}_{6} = \frac{12!}{6!(12-6)!} = \frac{12x11x10x9x8x7x6!}{6!*6x5x4x3x2x1} \ \ C^{12}_6 = 924[/tex]
• Calculamos el total de grupos que se pueden formar con 6 nadadores de un total de 8 (nadadores).
[tex]C^{8}_{6} = \frac{8!}{6!(8-6)!} = \frac{8x7x6!}{6!*2x1} \ \ C^{8}_6 = 28[/tex]
Luego, reemplazando:
x = 924 - 28
x = 896
Respuesta: Se pueden formar 896 grupos de 6 integrantes, tal que cada grupo tenga por lo menos a un fubtolista.
Eso es todo! Saludos! Jeizon1L
De los 5 futbolistas y 8 nadadores se pueden tomar 896 grupos en los que este por lo menos un futbolista
Combinación: es la manera de tomar de un conjunto de n elementos k de ellos, donde el orden de selección no es relevante. La ecuación que cuenta la cantidad de combinaciones es:
Comb(n,k) = n!/((n-k)!*k!)
Tenemos en total 4 + 8 = 12 personas, entonces de las 12 personas tomamos dos y como queremos que tenga al menos un futbolista entonces restamos los casos en que no hay futbolista que es de los 8 nadadores tomar 6, entonces es:
Comb(12,6) - Comb(8,6) = 12!/((12 - 6)!*6!) - 8!/((8 - 6)!*6!) = 924 - 28 = 896
Puedes visitar: https://brainly.lat/tarea/12181590

Gracias por usar nuestro servicio. Siempre estamos aquí para proporcionar respuestas precisas y actualizadas a todas tus preguntas. Gracias por usar nuestro servicio. Siempre estamos aquí para proporcionar respuestas precisas y actualizadas a todas tus preguntas. Tu conocimiento es valioso. Regresa a Revelroom.ca para obtener más respuestas e información.