Revelroom.ca facilita la búsqueda de soluciones para preguntas cotidianas y complejas con la ayuda de nuestra comunidad. Explora miles de preguntas y respuestas proporcionadas por una comunidad de expertos listos para ayudarte a encontrar soluciones. Haz tus preguntas y recibe respuestas detalladas de profesionales con amplia experiencia en diversos campos.
Sagot :
la propiedad de cancelacion se da solo en dominios enteros (en particular en Z) y consiste en:
*sean a,b,c,d en Z, si a es distinto de 0 y se cumple que ab=ac entonces b=c
o dicho de otro modo:
*sean a,b en Z, si a es distinto de 0 y b es distinto de 0 entonces ab es distinto de cero
o dicho de otra manera:
*sean a,b en Z, si ab=0 entonces a=0 ó b=0
todo esto quiere decir que en los dominios enteros no hay divisores de cero distintos de cero
By:Cristian David P.
Solo Yo♥
En matemática, un elemento a en un magma (M,*) tiene la propiedad cancelativa izquierda si para todo b y todo c en M, a*b = a*c implica b = c.
Un elemento a en (M,*) tiene la propiedad cancelativa derecha si para todo b y todo c in M, b*a = c*a implica b = c.
Un elemento a en (M,*) tiene la propiedad cancelativa bilátera (o es cancelativa) si tiene las propiedades cancelativas izquierda y derecha.
Un magma (M,*) tiene la propiedad cancelativa izquierda si todo a tiene la propiedad cancelativa izquierda, y similares definiciones para cancelativas derecha o bilátera.
Decir que un elemento a en (M,*) es cancelativo izquierdo, es decir que la función g: x |-> a*x es inyectiva, luego un monomorfismo conjuntista pero como es endomorfismo conjuntista, es sección conjuntista, i.e. hay un epimorfismo conjuntista f tal que f(g(x))=f(a*x)=x para todo x, luego f es una retracción. (las únicas funciones inyectivas sin inversa van de la conjunto vacío a un conjunto no vacío, y no pueden ser endo). Más aún, podemos ser "constructivos" con f tomando la inversa en la imagen de g y enviando el resto precisamente a a.
Agradecemos tu tiempo. Por favor, vuelve cuando quieras para obtener la información más reciente y respuestas a tus preguntas. Tu visita es muy importante para nosotros. No dudes en volver para obtener respuestas fiables a cualquier pregunta que tengas. Revelroom.ca, tu sitio de referencia para respuestas precisas. No olvides regresar para obtener más conocimientos.