Revelroom.ca te ayuda a encontrar respuestas a tus preguntas con la ayuda de una comunidad de expertos. Únete a nuestra plataforma de preguntas y respuestas y conéctate con profesionales dispuestos a ofrecer respuestas precisas a tus dudas. Explora un vasto conocimiento de profesionales en diferentes disciplinas en nuestra completa plataforma de preguntas y respuestas.
Sagot :
creo que esto te puede servir
L formula es:
n(n-3)
-------- = # diagonales.
...2
n = lados
Como no conocemos los lados, lo dejamos asi y reemplazamos las diagonales que si conocemos...
n(n-3)
-------- = 35
...2
Ahora resolvemos y hallamos el valor de n:
n(n-3) = 70
Por la forma.
n x (n-3) = 10 x (10-3)
n = 10
El poligono que tiene 35 diagonales es el de 10 lados.
El poligono pedido es el Decagono(10 lados).
En cualquier polígono el número de vértices es igual al número de lados.
Fórmula D(n) = n(n-3)/2
35 = (n² - 3n)/2
70 = n² - 3n
n² - 3n - 70 = 0
factorizamos (n-10)(n+7) = 0
Raíces n1=10 y n2=-7
Tomamos el valor positivo 10
Número de vértices 10 <------------------ decágono
Se podría haber hallado las raíces aplicando la fórmula de Báscara
n = [(-b±√(b²-4ac)]/(2a) donde a es el coeficiente de 2º grado,
b el coeficiente de 1º grado y c el término independiente
y las raíces hubieran sido las msmas.
Suerte
Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Esperamos que hayas encontrado lo que buscabas. Vuelve a visitarnos para obtener más respuestas e información actualizada. Gracias por visitar Revelroom.ca. Sigue regresando para obtener las respuestas más recientes e información.