Una recta tangente a una curva en un punto, es una recta que al pasar por dicho punto y que en dicho punto tiene la misma pendiente de la curva. La recta tangente es un caso particular deespacio tangente a una variedad diferenciable de dimensión 1, .
Si representa una función f (no es el caso en el gráfico precedente), entonces la recta tendrá como coeficiente director (o pendiente):
Donde son las coordenadas del punto y las del punto . Por lo tanto, la pendiente de la tangente TA será:
Es, por definición, f '(a), la derivada de f en a.
La ecuación de la tangente es :
La recta ortogonal a la tangente que pasa por el punto se denomina recta normal y su pendiente, en un sistema de coordenadas ortonormales, es dada por . Siendo su ecuación:
suponiendo claro está que . Si entonces la recta normal es simplemente . Esta recta no interviene en el