xime97
Answered

Revelroom.ca te ayuda a encontrar respuestas a tus preguntas con la ayuda de una comunidad de expertos. Encuentra respuestas rápidas y fiables a tus preguntas gracias a la asistencia de expertos experimentados en nuestra plataforma amigable y fácil de usar. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones a tus preguntas de manera rápida y precisa.

como se produce el movimiento de los barcos??

Sagot :

En principio podríamos entender el funcionamiento de las hélices por dos caminos distintos que no son más que las dos caras de una misma moneda.       Algunos lo explican con la comparación de un ‘saca corchos’ que al girar avanza penetrando en el corcho (que sería el agua). Esta comparación es una aproximación muy simplista y adecuada sólo para hélices de palas muy anchas con las que la velocidad del agua desplazada es muy lenta.               Pero el agua no es como la madera o el corcho del ejemplo anterior. Al ‘penetrar’ la hélice, el agua es empujada hacia atrás, pues no es un sólido rígido, actuando una ley de la física, conocido como el principio de acción-reacción.   Tanta agua empujemos hacia atrás, tanto barco es empujado hacia adelante. Si por ejemplo, la hélice empuja 100 kilos (masa) de agua a 50 kilómetros por hora, y si nuestro barco pesara solo 100 kilos, este se movería a también 50 kilómetros por hora (descontando las perdidas de potencia y rozamientos). Pero si nuestro barco pesase 200 kilos, entonces se movería a la mitad de velocidad, 25 kilómetros por hora. Se conserva la cantidad de movimiento (masa de agua x velocidad de agua = masa de barco x velocidad de barco)   Puesto que el agua es un fluido, para que se produzca un empuje, tiene que haber una masa de agua desplazándose hacia atrás. Si la hélice avanzase en el agua como un saca-corchos, no habría ningún empuje. Es el caso de la hélice de un velero en punto muerto y arrastrada por el movimiento del barco. El eje del motor se mueve, la hélice gira sin producir ningún empuje.    Pero para que se produzca empuje necesariamente la hélice tiene que trasladar agua hacia atrás. Y trasladará más agua, cuanto menos avance la hélice respecto a su paso de avance teórico. Si por ejemplo una hélice tiene que avanzar 30 centímetros en cada vuelta (su paso de avance) eso es justamente lo que hará en el caso anterior del velero con el motor parado y el eje en punto muerto. Podríamos medir las revoluciones del eje para utilizarlo como corredera y medir la velocidad del barco. En el ejemplo anterior, si midiéramos 500 revoluciones por minuto, sabríamos que en ese minuto el barco habría avanzado 500 x 30 centímetros, es decir 150 metros/minuto que es más o menos 5 nudos.    Pero cuando el motor funciona, por cada vuelta de hélice, en vez de avanzar los 30 centímetros del ejemplo anterior, solo avanzará por ejemplo unos 25 centímetros. Es como si ‘resbalara’ esos 5 importantes centímetros. Decimos ‘Importantes’ porque son justamente esos centímetros los que trasladan agua hacia atrás y por tanto los que producen ‘empuje’.   Entender en detalle el funcionamiento de las hélices tiene mucha ‘tela’ pues el agua tiene distinta presión cuanto más profunda sea, y la pequeña diferencia de presión entre la parte superior del agua y la que toca a la parte inferior de la hélice es muy apreciable. De hecho esta diferencia de presión es la que provoca el empuje lateral que hace que el barco tenga tendencia a ‘irse’ a babor o estribor dependiendo del sentido de giro de la hélice.   Y el tema se complica mucho más si seguimos profundizando, ya que cada aspa de una hélice en realidad se comporta como el ala de un avión y por tanto hay que analizar su funcionamiento como tal.   Podemos ‘trasladar’ el movimiento circular del aspa de la hélice imaginando que no es el aspa el que se mueve sino el fluido (da igual que sea agua o aire). Por tanto transportamos el estudio totalmente al campo hidrodinámico, en donde aplicaremos la mecánica de fluidos en todas sus consecuencias. Debemos estudiar el empuje como consecuencia de la presión dinámica producido por la cara posterior, a la cual se suma (sobretodo) la succión producida por la cara anterior (la que está más a proa)