Revelroom.ca te ayuda a encontrar respuestas confiables a todas tus preguntas con la ayuda de expertos. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados. Explora un vasto conocimiento de profesionales en diferentes disciplinas en nuestra completa plataforma de preguntas y respuestas.
Sagot :
En cada una de las cuatro esquinas se cortará un cuadrado de 3 pulgadas de lado.
Por tanto podemos calcular la superficie que se elminará de la hoja original elevando ese lado al cuadrado y multiplicándolo por 4, es decir:
3² x 4 = 36 pulgadas cuadradas deberán eliminarse.
Podemos obtener una primera expresión con los siguientes datos:
---> Medida del lado de la caja original: 3 + x + 3 = 6+x
(es decir, lo que miden de lado dos de los cuadrados de esquinas consecutivas que vamos a recortar, más lo que medirá la parte central que desconocemos y por eso la llamo "x" y que una vez hallado su valor podré responder a la pregunta concreta del ejercicio)
---> Superficie de esa hoja original = el lado al cuadrado, o sea: (6+x)²
---> Superficie de la base de la caja a construir: (6+x)² -36
(es decir, la superficie total de la hoja menos la superficie que hemos calculado anteriormente y que hemos de recortar)
Cuando se plieguen los trozos restantes, tendremos que la arista que marca la altura de esa caja medirá lo mismo que esos lados, o sea: 3 pulgadas y la figura será lo que se llama un paralelepípedo, es decir, un poliedro cuyas caras son paralelas dos a dos.
De ahí podemos ya deducir la ecuación para resolver el ejercicio.
Si yo multiplico la superficie de la base de la caja a construir (6+x)² -36 ... por la altura de la caja (3), me resultará el volumen que me dan como dato, es decir que se plantea esto:
[(6+x)² -36]•3 = 108 ... y ya es resolver esa ecuación de 2º grado...
(36 +x² +12x -36) • 3 = 108
... el "36" se nos anula por estar en positivo y en negativo a la vez y reduciendo términos semejantes...
(x² +12x) • 3 = 108 ...dividiendo todo por 3 ...
x² +12x -36 = 0 ... usando la fórmula general de resolución de estas ecuaciones...
................_______
...... –b ± √ b² – 4ac
x = ▬▬▬▬▬▬▬
................2a
x = (-12+16,97) / 2 = 4,97/2 = 2,5 pulgadas
(tomando sólo el valor positivo de "x" y aproximando por exceso)
Si a esa medida añadimos las 6 pulgadas de los cuadrados de las esquinas tenemos que la respuesta al ejercicio es: 6 + 2,5 =
8,5 pulgadas es la medida del lado de la caja original.
PD: No sé si me habré podido equivocar en alguna operación pero el razonamiento creo que es válido. Lo único extraño es que no salga exacto ya que estos problemas suelen ponerlos para que salgan sin decimales, pero en fin... hice lo que pude.
Saludos.
Por tanto podemos calcular la superficie que se elminará de la hoja original elevando ese lado al cuadrado y multiplicándolo por 4, es decir:
3² x 4 = 36 pulgadas cuadradas deberán eliminarse.
Podemos obtener una primera expresión con los siguientes datos:
---> Medida del lado de la caja original: 3 + x + 3 = 6+x
(es decir, lo que miden de lado dos de los cuadrados de esquinas consecutivas que vamos a recortar, más lo que medirá la parte central que desconocemos y por eso la llamo "x" y que una vez hallado su valor podré responder a la pregunta concreta del ejercicio)
---> Superficie de esa hoja original = el lado al cuadrado, o sea: (6+x)²
---> Superficie de la base de la caja a construir: (6+x)² -36
(es decir, la superficie total de la hoja menos la superficie que hemos calculado anteriormente y que hemos de recortar)
Cuando se plieguen los trozos restantes, tendremos que la arista que marca la altura de esa caja medirá lo mismo que esos lados, o sea: 3 pulgadas y la figura será lo que se llama un paralelepípedo, es decir, un poliedro cuyas caras son paralelas dos a dos.
De ahí podemos ya deducir la ecuación para resolver el ejercicio.
Si yo multiplico la superficie de la base de la caja a construir (6+x)² -36 ... por la altura de la caja (3), me resultará el volumen que me dan como dato, es decir que se plantea esto:
[(6+x)² -36]•3 = 108 ... y ya es resolver esa ecuación de 2º grado...
(36 +x² +12x -36) • 3 = 108
... el "36" se nos anula por estar en positivo y en negativo a la vez y reduciendo términos semejantes...
(x² +12x) • 3 = 108 ...dividiendo todo por 3 ...
x² +12x -36 = 0 ... usando la fórmula general de resolución de estas ecuaciones...
................_______
...... –b ± √ b² – 4ac
x = ▬▬▬▬▬▬▬
................2a
x = (-12+16,97) / 2 = 4,97/2 = 2,5 pulgadas
(tomando sólo el valor positivo de "x" y aproximando por exceso)
Si a esa medida añadimos las 6 pulgadas de los cuadrados de las esquinas tenemos que la respuesta al ejercicio es: 6 + 2,5 =
8,5 pulgadas es la medida del lado de la caja original.
PD: No sé si me habré podido equivocar en alguna operación pero el razonamiento creo que es válido. Lo único extraño es que no salga exacto ya que estos problemas suelen ponerlos para que salgan sin decimales, pero en fin... hice lo que pude.
Saludos.
Gracias por pasar por aquí. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Hasta pronto. Gracias por elegir nuestra plataforma. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Vuelve a Revelroom.ca para obtener las respuestas más recientes y la información de nuestros expertos.