Obtén soluciones a tus preguntas en Revelroom.ca, la plataforma de Q&A más rápida y precisa. Obtén soluciones rápidas y fiables a tus preguntas con la ayuda de una comunidad de expertos experimentados en nuestra plataforma. Descubre respuestas detalladas a tus preguntas gracias a una vasta red de profesionales en nuestra completa plataforma de preguntas y respuestas.
Sagot :
Primeramente::La fórmula de Herón, descubierta por Herón de Alejandría,1 relaciona el área de un triángulo en términos de las longitudes de sus lados a, b y c:donde s es el semiperímetro del triángulo:La fórmula también puede escribirse de las siguientes formas:
Herón de Alejandría vivió hacia el siglo III a. de C. Son conocidas varias obras suyas, pero se le recuerda sobre todo por la llamada fórmula de Herón, que nos permite calcular el área de un triángulo conocidos los tres lados. No es necesario por tanto conocer la altura ni ninguno de los ángulos. Si llamamos s al semiperímetro y a, b, c a los tres lados: Llamando al semiperímetroentonces el área puede expresarse como
La demostración de Herón es realmente sorprendente. Combinando elementos geométricos sencillos llega a construir una de las demostraciones más ricas y elegantes de toda la matemática. Esta demostración puede verse en la Gacetilla Matemática Presentamos aquí otra más moderna basada en el teorema del coseno.La fórmula clásica para el área del triángulo
nos dice que A=c*h/2; o lo que es lo mismo,
A=c*a*sen(b)/2. Por otro lado, el teorema del
coseno nos asegura que b2=a2+c2-2ac*cos(b). El camino a seguir será despejar cos(b) de la
última ecuación y sustituir sen(b) en la anterior. Tenemos pues que cos(b)=(a2+c2-b2)/(2ac), y como sen2(b)=1-cos2(b) entonces: o lo que es lo mismo Teniendo en cuenta que el numerador es una diferencia de cuadrados y el denominador un cuadrado obtenemos:sen(b) = raíz[(2ac-(a2+c2-b2))*(2ac+(a2+c2-b2))]/(2ac) = raíz[(b2-(a-c)2)*((a+c)2-b2)]/(2ac) Sustituyendo ahora en la fórmula del área, tenemos que A = raíz[(b2-(a-c)2)*((a+c)2-b2)]/4 y utilizando de nuevo la descomposición de la diferencia de cuadrados como suma por diferencia, nos queda: Finalmente, introducimos el 4 dentro de la raíz quedando 16, y si observamos que (b+a-c)/2 = (s-c)/2, y que (b-a+c)/2 = (s-a)/2 y así sucesivamente, llegamos a la fórmula final: q.e.d.
La demostración de Herón es realmente sorprendente. Combinando elementos geométricos sencillos llega a construir una de las demostraciones más ricas y elegantes de toda la matemática. Esta demostración puede verse en la Gacetilla Matemática Presentamos aquí otra más moderna basada en el teorema del coseno.La fórmula clásica para el área del triángulo
nos dice que A=c*h/2; o lo que es lo mismo,
A=c*a*sen(b)/2. Por otro lado, el teorema del
coseno nos asegura que b2=a2+c2-2ac*cos(b). El camino a seguir será despejar cos(b) de la
última ecuación y sustituir sen(b) en la anterior. Tenemos pues que cos(b)=(a2+c2-b2)/(2ac), y como sen2(b)=1-cos2(b) entonces: o lo que es lo mismo Teniendo en cuenta que el numerador es una diferencia de cuadrados y el denominador un cuadrado obtenemos:sen(b) = raíz[(2ac-(a2+c2-b2))*(2ac+(a2+c2-b2))]/(2ac) = raíz[(b2-(a-c)2)*((a+c)2-b2)]/(2ac) Sustituyendo ahora en la fórmula del área, tenemos que A = raíz[(b2-(a-c)2)*((a+c)2-b2)]/4 y utilizando de nuevo la descomposición de la diferencia de cuadrados como suma por diferencia, nos queda: Finalmente, introducimos el 4 dentro de la raíz quedando 16, y si observamos que (b+a-c)/2 = (s-c)/2, y que (b-a+c)/2 = (s-a)/2 y así sucesivamente, llegamos a la fórmula final: q.e.d.
Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Esperamos que hayas encontrado lo que buscabas. Vuelve a visitarnos para obtener más respuestas e información actualizada. Nos enorgullece proporcionar respuestas en Revelroom.ca. Vuelve a visitarnos para obtener más información.