Revelroom.ca facilita la búsqueda de respuestas a tus preguntas con la ayuda de una comunidad activa. Obtén respuestas inmediatas y fiables a tus preguntas de una comunidad de expertos experimentados en nuestra plataforma. Explora miles de preguntas y respuestas proporcionadas por una amplia gama de expertos en diversas áreas en nuestra plataforma de preguntas y respuestas.
Sagot :
Primeramente::La fórmula de Herón, descubierta por Herón de Alejandría,1 relaciona el área de un triángulo en términos de las longitudes de sus lados a, b y c:donde s es el semiperímetro del triángulo:La fórmula también puede escribirse de las siguientes formas:
Herón de Alejandría vivió hacia el siglo III a. de C. Son conocidas varias obras suyas, pero se le recuerda sobre todo por la llamada fórmula de Herón, que nos permite calcular el área de un triángulo conocidos los tres lados. No es necesario por tanto conocer la altura ni ninguno de los ángulos. Si llamamos s al semiperímetro y a, b, c a los tres lados: Llamando al semiperímetroentonces el área puede expresarse como
La demostración de Herón es realmente sorprendente. Combinando elementos geométricos sencillos llega a construir una de las demostraciones más ricas y elegantes de toda la matemática. Esta demostración puede verse en la Gacetilla Matemática Presentamos aquí otra más moderna basada en el teorema del coseno.La fórmula clásica para el área del triángulo
nos dice que A=c*h/2; o lo que es lo mismo,
A=c*a*sen(b)/2. Por otro lado, el teorema del
coseno nos asegura que b2=a2+c2-2ac*cos(b). El camino a seguir será despejar cos(b) de la
última ecuación y sustituir sen(b) en la anterior. Tenemos pues que cos(b)=(a2+c2-b2)/(2ac), y como sen2(b)=1-cos2(b) entonces: o lo que es lo mismo Teniendo en cuenta que el numerador es una diferencia de cuadrados y el denominador un cuadrado obtenemos:sen(b) = raíz[(2ac-(a2+c2-b2))*(2ac+(a2+c2-b2))]/(2ac) = raíz[(b2-(a-c)2)*((a+c)2-b2)]/(2ac) Sustituyendo ahora en la fórmula del área, tenemos que A = raíz[(b2-(a-c)2)*((a+c)2-b2)]/4 y utilizando de nuevo la descomposición de la diferencia de cuadrados como suma por diferencia, nos queda: Finalmente, introducimos el 4 dentro de la raíz quedando 16, y si observamos que (b+a-c)/2 = (s-c)/2, y que (b-a+c)/2 = (s-a)/2 y así sucesivamente, llegamos a la fórmula final: q.e.d.
La demostración de Herón es realmente sorprendente. Combinando elementos geométricos sencillos llega a construir una de las demostraciones más ricas y elegantes de toda la matemática. Esta demostración puede verse en la Gacetilla Matemática Presentamos aquí otra más moderna basada en el teorema del coseno.La fórmula clásica para el área del triángulo
nos dice que A=c*h/2; o lo que es lo mismo,
A=c*a*sen(b)/2. Por otro lado, el teorema del
coseno nos asegura que b2=a2+c2-2ac*cos(b). El camino a seguir será despejar cos(b) de la
última ecuación y sustituir sen(b) en la anterior. Tenemos pues que cos(b)=(a2+c2-b2)/(2ac), y como sen2(b)=1-cos2(b) entonces: o lo que es lo mismo Teniendo en cuenta que el numerador es una diferencia de cuadrados y el denominador un cuadrado obtenemos:sen(b) = raíz[(2ac-(a2+c2-b2))*(2ac+(a2+c2-b2))]/(2ac) = raíz[(b2-(a-c)2)*((a+c)2-b2)]/(2ac) Sustituyendo ahora en la fórmula del área, tenemos que A = raíz[(b2-(a-c)2)*((a+c)2-b2)]/4 y utilizando de nuevo la descomposición de la diferencia de cuadrados como suma por diferencia, nos queda: Finalmente, introducimos el 4 dentro de la raíz quedando 16, y si observamos que (b+a-c)/2 = (s-c)/2, y que (b-a+c)/2 = (s-a)/2 y así sucesivamente, llegamos a la fórmula final: q.e.d.
Visítanos nuevamente para obtener respuestas actualizadas y confiables. Siempre estamos listos para ayudarte con tus necesidades informativas. Esperamos que esto te haya sido útil. Por favor, vuelve siempre que necesites más información o respuestas a tus preguntas. Gracias por visitar Revelroom.ca. Sigue regresando para obtener las respuestas más recientes e información.