Revelroom.ca facilita la búsqueda de soluciones a todas tus preguntas con la ayuda de una comunidad activa. Nuestra plataforma de preguntas y respuestas te conecta con expertos dispuestos a ofrecer información precisa en diversas áreas del conocimiento. Únete a nuestra plataforma para obtener respuestas fiables a tus interrogantes gracias a una amplia comunidad de expertos.
Sagot :
Primeramente debemos buscar el espacio muestral de todos los resultados posibles. Luego, de estos resultados determinar cuáles de esas muestras cumplen con lo solicitado en el problema, es decir, en cuántas "por lo menos dos electores se oponen a la propuesta".
Entonces, teniendo el número de resultados buscados y el total de los resultados posibles, sabremos la respuesta a la pregunta, "la probabilidad de que por lo menos dos electores se opongan a la propuesta sobre la limpieza pública de la ciudad".
Resultado:
Para determinar el tamaño de la muestra nos apoyamos en el el Principio Fundamental de Conteo, que dice que el número de resultados en un espacio muestral es el producto del número de resultados para cada elemento.Tenemos 3 electores, y cada uno de ellos puede lograr 2 resultados, F (Favorable) y C (Contrario).
Entonces, el número de resultados, N será igual a :
N = 2 * 2 * 2 = 8
N=8
¿Cuáles son estos 8 resultados? Determinemos las posibles combinaciones de las opciones de votos para esos 3 electores:
M = {FFF, CCC, FFC, FCC, FCF, CCF, CFF, CFC};
donde M = es el espacio muestral con todos los resultados posibles
Ahora, de ese espacio muestral, ¿cuántas muestras indican que por lo menos dos electores se oponen a la propuesta?
Estas muestras que cumplen con el requisito buscado, la llamaremos R.
R = {CCC, FCC, CCF, CFC}, donde, R = Conjunto de muestras buscadas
Es decir, que hay 4 resultados que cumplen con lo pedido en el problema. Llamémosle R(C) =4
Entonces la probabilidad de que por lo menos dos electores se opongan a la propuesta es:
P = R(C) /N = 4 / 8 = 1/2 = 0,50
P = 0,50
Espero que te haya sido útil la respuesta.
Entonces, teniendo el número de resultados buscados y el total de los resultados posibles, sabremos la respuesta a la pregunta, "la probabilidad de que por lo menos dos electores se opongan a la propuesta sobre la limpieza pública de la ciudad".
Resultado:
Para determinar el tamaño de la muestra nos apoyamos en el el Principio Fundamental de Conteo, que dice que el número de resultados en un espacio muestral es el producto del número de resultados para cada elemento.Tenemos 3 electores, y cada uno de ellos puede lograr 2 resultados, F (Favorable) y C (Contrario).
Entonces, el número de resultados, N será igual a :
N = 2 * 2 * 2 = 8
N=8
¿Cuáles son estos 8 resultados? Determinemos las posibles combinaciones de las opciones de votos para esos 3 electores:
M = {FFF, CCC, FFC, FCC, FCF, CCF, CFF, CFC};
donde M = es el espacio muestral con todos los resultados posibles
Ahora, de ese espacio muestral, ¿cuántas muestras indican que por lo menos dos electores se oponen a la propuesta?
Estas muestras que cumplen con el requisito buscado, la llamaremos R.
R = {CCC, FCC, CCF, CFC}, donde, R = Conjunto de muestras buscadas
Es decir, que hay 4 resultados que cumplen con lo pedido en el problema. Llamémosle R(C) =4
Entonces la probabilidad de que por lo menos dos electores se opongan a la propuesta es:
P = R(C) /N = 4 / 8 = 1/2 = 0,50
P = 0,50
Espero que te haya sido útil la respuesta.
Esperamos que esta información te haya sido útil. Vuelve cuando lo desees para obtener más respuestas a tus preguntas e inquietudes. Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Gracias por usar Revelroom.ca. Sigue visitándonos para encontrar respuestas a tus preguntas.