Revelroom.ca es el lugar ideal para obtener respuestas rápidas y precisas a todas tus preguntas. Descubre respuestas detalladas a tus preguntas con la ayuda de una vasta red de profesionales en nuestra completa plataforma de preguntas y respuestas. Explora miles de preguntas y respuestas proporcionadas por una comunidad de expertos en nuestra plataforma amigable.
Sagot :
Hola:
Una homotecia es una trasformación geométrica que, a partir de un punto fijo, multiplica todas las distancias por un mismo factor.Es una amplificación. Su definición rigurosa es vectorial:
Definición
Sea E un espacio vectorial sobre un cuerpo K. Sea Ω un elemento (visto como un punto) de E, y kεK un escalar.
Propiedades
La homotecia es una trasformación lineal y por consiguiente conserva:
el alineamiento: las imágenes de puntos alineados son alineados: (A,B,C) y (A', B', C') en la figura
el centro de un segmento, y más generalmente el baricentro: la imagen del baricentro es el baricentro de las imágenes. En la figura, B es el centro de [A;C] y por lo tanto B' es el de [A';C']
el paralelismo: dos rectas paralelas tienen imágenes paralelas. En la figura (BE) // (CD) porque (BE) //(CD).
Además la homotecia conserva:
el cociente de longitudes: A'C'/B'E' = AC/BE en la figura
los ángulos orientados, en particular los ángulos rectos. Es obvio en la figura.
Más aún:
La imagen de una recta es otra recta paralela.
Todas las longitudes son multiplicadas por |k|, el valor absoluto de la razón.
Si k ≠ 1, el centro de la homotecia es el único punto fijo (k = 1 corresponde a la identidad de E: todos los puntos son fijos)
Si k ≠ 0, hΩ k admite como trasformación recíproca hΩ 1/k. (cuando k = 0, no es biyectiva)
Al componer dos homotecias del mismo centro se obtiene otra homotecia con este centro, cuya razón es el producto de las razones de las homotecias iniciales: hΩ k o hΩ k' = hΩ k·k'.
Al componer homotecias de centros distintos, de razones k y k', se obtiene una homotecia de razón k·k' cuando k·k' ≠1, y una traslación sino. Se dice que el conjunto de las homotecias y las translaciones forman un grupo.
k = - 1 corresponde a la simetría de centro Ω, o una rotación al rededor de Ω de ángulo π radianes (180·)
|k| > 1 implica una ampliación de la figura.
|k| < 1 implica una reducción.
k < 0 se puede interpretar como la composición de una simetría de centro Ω con una homotecia sin inversión.
Una homotecia en el plano es una transformación del plano en sí mismo en donde una recta y su homóloga son paralelas. De esta definición, se sigue fácilmente que las homotecias conservan ángulos, es decir son transformaciones conformes del plano, que el conjunto de homotecias forman un grupo y que las traslaciones son casos particulares de las homotecias.
Consideremos la homotecia en la cual la recta OA se transfomra en la recta O'B, siendo O' el homólogo de O y B el homólogo de A. Necesariamente, las rectas OO' y AB son invariantes en esta homotecia y el punto H1, centro de la homotecia, es invariante. En esta homotecia la circunferencia de centro O y radio OA se transforma en la circunferencia de centro O' y de radio O'B y la razón de la homotecia es la razón (positiva) de los segmentos O'B y OA.
Si por el contrario, el punto A se transforma en B' entonces la recta AB' es invariante y es el punto H2 el centro de homotecia. En este caso, la razón de la homotecia es negativa.
Una homotecia es una trasformación geométrica que, a partir de un punto fijo, multiplica todas las distancias por un mismo factor.Es una amplificación. Su definición rigurosa es vectorial:
Definición
Sea E un espacio vectorial sobre un cuerpo K. Sea Ω un elemento (visto como un punto) de E, y kεK un escalar.
Propiedades
La homotecia es una trasformación lineal y por consiguiente conserva:
el alineamiento: las imágenes de puntos alineados son alineados: (A,B,C) y (A', B', C') en la figura
el centro de un segmento, y más generalmente el baricentro: la imagen del baricentro es el baricentro de las imágenes. En la figura, B es el centro de [A;C] y por lo tanto B' es el de [A';C']
el paralelismo: dos rectas paralelas tienen imágenes paralelas. En la figura (BE) // (CD) porque (BE) //(CD).
Además la homotecia conserva:
el cociente de longitudes: A'C'/B'E' = AC/BE en la figura
los ángulos orientados, en particular los ángulos rectos. Es obvio en la figura.
Más aún:
La imagen de una recta es otra recta paralela.
Todas las longitudes son multiplicadas por |k|, el valor absoluto de la razón.
Si k ≠ 1, el centro de la homotecia es el único punto fijo (k = 1 corresponde a la identidad de E: todos los puntos son fijos)
Si k ≠ 0, hΩ k admite como trasformación recíproca hΩ 1/k. (cuando k = 0, no es biyectiva)
Al componer dos homotecias del mismo centro se obtiene otra homotecia con este centro, cuya razón es el producto de las razones de las homotecias iniciales: hΩ k o hΩ k' = hΩ k·k'.
Al componer homotecias de centros distintos, de razones k y k', se obtiene una homotecia de razón k·k' cuando k·k' ≠1, y una traslación sino. Se dice que el conjunto de las homotecias y las translaciones forman un grupo.
k = - 1 corresponde a la simetría de centro Ω, o una rotación al rededor de Ω de ángulo π radianes (180·)
|k| > 1 implica una ampliación de la figura.
|k| < 1 implica una reducción.
k < 0 se puede interpretar como la composición de una simetría de centro Ω con una homotecia sin inversión.
Una homotecia en el plano es una transformación del plano en sí mismo en donde una recta y su homóloga son paralelas. De esta definición, se sigue fácilmente que las homotecias conservan ángulos, es decir son transformaciones conformes del plano, que el conjunto de homotecias forman un grupo y que las traslaciones son casos particulares de las homotecias.
Consideremos la homotecia en la cual la recta OA se transfomra en la recta O'B, siendo O' el homólogo de O y B el homólogo de A. Necesariamente, las rectas OO' y AB son invariantes en esta homotecia y el punto H1, centro de la homotecia, es invariante. En esta homotecia la circunferencia de centro O y radio OA se transforma en la circunferencia de centro O' y de radio O'B y la razón de la homotecia es la razón (positiva) de los segmentos O'B y OA.
Si por el contrario, el punto A se transforma en B' entonces la recta AB' es invariante y es el punto H2 el centro de homotecia. En este caso, la razón de la homotecia es negativa.
Agradecemos tu tiempo en nuestro sitio. No dudes en regresar siempre que tengas más preguntas o necesites aclaraciones adicionales. Gracias por tu visita. Nos dedicamos a ayudarte a encontrar la información que necesitas, siempre que la necesites. Gracias por confiar en Revelroom.ca. Vuelve a visitarnos para obtener nuevas respuestas de los expertos.