Revelroom.ca te ayuda a encontrar respuestas confiables a todas tus preguntas con la ayuda de expertos. Obtén respuestas detalladas y precisas a tus preguntas de una comunidad dedicada de expertos. Conéctate con profesionales dispuestos a ofrecer respuestas precisas a tus preguntas en nuestra completa plataforma de preguntas y respuestas.
Sagot :
La función exponencial es siempre la inversa de la función logarítmica y ésta, a su vez, es siempre la inversa de la función exponencial. Por eso se dice que ambas funciones son "hermanas".
Se llama función exponencial a aquella cuya expresión es: f ( x ) = k . ax + b Esta función tiene por dominio de definición el conjunto de los números reales, y cuenta con una característica particular, ya que su derivada es la misma función.
En la expresión f ( x ) = k . ax + b, el número k es real y distinto de cero, mientras que a es un número real positivo y distin¬to de uno.
Entonces:
El número k es distinto de cero, ya que si no fuera así, quedaría una función constante: f ( x ) = b , porque se anula el primer término.
El número a, por su parte, debe ser mayor que cero, ya que si a fuera un número negativo, por ejemplo -4, no podríamos elevarlo 1/2, es decir, sacar su raíz cuadrada.
En el gráfico, la función es creciente, ya que a es mayor que uno, corta al eje de las ordenadas en uno y no tiene raíces, no corta al eje x.
A medida que los valores de x son menores, y toma valores cada vez más próximos a cero. En ese caso, decimos que la función tiene una asíntota horizontal en y = 0.
El dominio de la función son todos los números reales mientras que la imagen son los números reales mayores que cero.
Función logarítmica:
La función logarítmica es del tipo f ( x ) = logb x donde b representa a un número real dis¬tinto de 1 y x es siempre mayor que 0 b ? R; b = 1; x > 0 .
La gráfica de la función logarítmica f ( x ) = log2 x es:
Imagen: Gráfica de la función logarítmica. Es una gráfica que no corta al eje y, a me¬dida que x toma valores cada vez más próximos al 0, y toma valores cada vez menores. La gráfica muestra que la función es creciente, y corta al eje x en 1 porque todo número distinto de 0 elevado a la 0 da por resultado 1. Por lo tanto, en la función logarítmica la asíntota es vertical.
En la expresión f ( x ) = k . ax + b, el número k es real y distinto de cero, mientras que a es un número real positivo y distin¬to de uno.
Entonces:
El número k es distinto de cero, ya que si no fuera así, quedaría una función constante: f ( x ) = b , porque se anula el primer término.
El número a, por su parte, debe ser mayor que cero, ya que si a fuera un número negativo, por ejemplo -4, no podríamos elevarlo 1/2, es decir, sacar su raíz cuadrada.
En el gráfico, la función es creciente, ya que a es mayor que uno, corta al eje de las ordenadas en uno y no tiene raíces, no corta al eje x.
A medida que los valores de x son menores, y toma valores cada vez más próximos a cero. En ese caso, decimos que la función tiene una asíntota horizontal en y = 0.
El dominio de la función son todos los números reales mientras que la imagen son los números reales mayores que cero.
Función logarítmica:
La función logarítmica es del tipo f ( x ) = logb x donde b representa a un número real dis¬tinto de 1 y x es siempre mayor que 0 b ? R; b = 1; x > 0 .
La gráfica de la función logarítmica f ( x ) = log2 x es:
Imagen: Gráfica de la función logarítmica. Es una gráfica que no corta al eje y, a me¬dida que x toma valores cada vez más próximos al 0, y toma valores cada vez menores. La gráfica muestra que la función es creciente, y corta al eje x en 1 porque todo número distinto de 0 elevado a la 0 da por resultado 1. Por lo tanto, en la función logarítmica la asíntota es vertical.
Gracias por utilizar nuestro servicio. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus preguntas. Visítanos nuevamente para obtener más información. Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Revelroom.ca está aquí para tus preguntas. No olvides regresar para obtener nuevas respuestas.