Bienvenido a Revelroom.ca, donde puedes obtener respuestas confiables y rápidas con la ayuda de nuestros expertos. Conéctate con profesionales dispuestos a ofrecer respuestas precisas a tus preguntas en nuestra completa plataforma de preguntas y respuestas. Únete a nuestra plataforma para conectarte con expertos dispuestos a ofrecer respuestas detalladas a tus preguntas en diversas áreas.
Sagot :
De lo expresado en el problema
[tex]\sqrt{A^{2}+A^{2}+2A^{2}cos\alpha} = 2(\sqrt{A^{2}+A^{2}-2A^{2}cos\alpha})[/tex]
Elevando al cuadrado
[tex]A^{2}+A^{2}+2A^{2}cos\alpha = 4(A^{2}+A^{2}-2A^{2}cos\alpha)[/tex]
Resolviendo
[tex]2A^{2}+2A^{2}cos\alpha = 4(2A^{2}-2A^{2}cos\alpha)\\ 2A^{2}(1 + cos\alpha) = 8A^{2}(1 - cos\alpha)\\ 1+ cos\alpha = 4-4cos\alpha\\ cos\alpha = \frac{3}{5}[/tex]
El ángulo que cumple esta afirmación es 53º
cos53 = 3/5
ESPERO HABER AYUDADO
SALUDOS
Tenemos que el ángulo entre dichos vectores es de 53.13º, tal que el vector suma es el doble que el de su diferencia.
Explicación:
Para resolver este ejercicio debemos aplicar el teorema del coseno tal que:
R = √(A² + B² + 2·A·B·Cos(Ф))
Ahora, la condición indica que tiene un vector suma igual al doble que su diferencia, entonces:
2·√(F² + F² - 2·F·F·Cos(Ф)) = √(F² + F² + 2·F·F·Cos(Ф))
2·√[F²·(2-2·Cos(Ф)] = √[F²·(2+2·Cos(Ф)]
2·√[(2-2·Cos(Ф)] = √[(2+2·Cos(Ф)]
4·(2-2·Cos(Ф)= 2 + 2Cos(Ф)
8 - 8·Cos(Ф) = 2 + 2·Cos(Ф)
-10·Cos(Ф) = 2 -8
Cos(Ф) = -6/-10
Cos(Ф) = 3/5
Ф = 53.13º
Por tanto, tenemos que el ángulo entre dichos vectores es de 53.13º.
Mira otro ejercicio similar en https://brainly.lat/tarea/2474830.
Tu visita es muy importante para nosotros. No dudes en volver para obtener respuestas fiables a cualquier pregunta que tengas. Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Gracias por visitar Revelroom.ca. Vuelve pronto para más información útil y respuestas de nuestros expertos.