Descubre respuestas a tus preguntas en Revelroom.ca, la plataforma de Q&A más confiable y eficiente para todas tus necesidades. Obtén respuestas detalladas y precisas a tus preguntas de una comunidad dedicada de expertos. Obtén respuestas detalladas y precisas a tus preguntas de una comunidad dedicada de expertos en nuestra plataforma de preguntas y respuestas.
Sagot :
Solución:
Forma: (x - h)^2 + (y - k)^2 = r^2
Primer Punto (10,2)=> (10 - h)^2 + (2 - k)^2 = r^2
Segundo Punto (4, -4)=> (4 -h)^2 + (-2 - k)^= r^2
Recta=> -1/2x + y = 0 => -1/2h + k = 0
Igualamos r^2=r^2 ambos puntos, y obtenemos:
100 - 20h + h^2 + 4 -4k + k^2 = 16 - 8h + h^2 + 16 + 8k + k^2
Simplificando términos semejantes tenemos:
104 - 12h - 12k - 32 = 0=> -12h - 12k + 72 =0........(1)
-1/2h + k = 0 .........(2)
Tenemos un sistema de dos incógnitas, (h, k)
Multiplico por (-1) la ecuación (1):
12h + 12k = 72
Multiplicar por 12 la (2) ecuación:
(-1/2)(12h) + 12k = 0=> -6h + 12k = 0 ......(2)
Nuevas ecuaciones son:
12h + 12k = 72
-6h + 12k = 0 => Multiplico por (-1)
12h + 12k = 72
6h - 12k = 0
____________
18h.../....= 72
.........18h = 72
............h = 72 / 18
............h = 4
Con este valor de "h" se reemplaza en cualquiera de las ecuaciones para hallar "k"
6h - 12k = 0=> 6(4) - 12k = 0 => 24 - 12k =0 => -12k = -24 => k = -24/-12 => k=2
Centro C:(4,2)
Ahora se halla el radio en las primeras ecuaciones yo escojo la primera:
(10 - h)^2 + (2 - k)^2 = r^2
(10 - 4)^2 + (2 - 2) = r^2 => 36 + 0 = r^2 => r= 6
Centro C:(4,2) y r= 6
Forma de la circunferencia: (x-h)^2 + (y-k)^= r^2
Sustituyendo valores encontrados, tenemos:
(x - 4)^2 + (y-2)^2 = 36
x^2 - 8x + 16 + y^2 - 4y + 4 = 36
x^2 + y^2 - 8x - 4y + 20 -36 = 0
x^2 + y^2 - 8x - 4y - 16 = 0
Respuesta: el literal "a"·
Espero haberte ayudado. Suerte.
Forma: (x - h)^2 + (y - k)^2 = r^2
Primer Punto (10,2)=> (10 - h)^2 + (2 - k)^2 = r^2
Segundo Punto (4, -4)=> (4 -h)^2 + (-2 - k)^= r^2
Recta=> -1/2x + y = 0 => -1/2h + k = 0
Igualamos r^2=r^2 ambos puntos, y obtenemos:
100 - 20h + h^2 + 4 -4k + k^2 = 16 - 8h + h^2 + 16 + 8k + k^2
Simplificando términos semejantes tenemos:
104 - 12h - 12k - 32 = 0=> -12h - 12k + 72 =0........(1)
-1/2h + k = 0 .........(2)
Tenemos un sistema de dos incógnitas, (h, k)
Multiplico por (-1) la ecuación (1):
12h + 12k = 72
Multiplicar por 12 la (2) ecuación:
(-1/2)(12h) + 12k = 0=> -6h + 12k = 0 ......(2)
Nuevas ecuaciones son:
12h + 12k = 72
-6h + 12k = 0 => Multiplico por (-1)
12h + 12k = 72
6h - 12k = 0
____________
18h.../....= 72
.........18h = 72
............h = 72 / 18
............h = 4
Con este valor de "h" se reemplaza en cualquiera de las ecuaciones para hallar "k"
6h - 12k = 0=> 6(4) - 12k = 0 => 24 - 12k =0 => -12k = -24 => k = -24/-12 => k=2
Centro C:(4,2)
Ahora se halla el radio en las primeras ecuaciones yo escojo la primera:
(10 - h)^2 + (2 - k)^2 = r^2
(10 - 4)^2 + (2 - 2) = r^2 => 36 + 0 = r^2 => r= 6
Centro C:(4,2) y r= 6
Forma de la circunferencia: (x-h)^2 + (y-k)^= r^2
Sustituyendo valores encontrados, tenemos:
(x - 4)^2 + (y-2)^2 = 36
x^2 - 8x + 16 + y^2 - 4y + 4 = 36
x^2 + y^2 - 8x - 4y + 20 -36 = 0
x^2 + y^2 - 8x - 4y - 16 = 0
Respuesta: el literal "a"·
Espero haberte ayudado. Suerte.
Agradecemos tu visita. Esperamos que las respuestas que encontraste hayan sido beneficiosas. No dudes en volver para más información. Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Revelroom.ca, tu sitio de referencia para respuestas precisas. No olvides regresar para obtener más conocimientos.