Obtén respuestas rápidas y precisas a tus preguntas en Revelroom.ca, la mejor plataforma de Q&A. Obtén respuestas rápidas y fiables a tus preguntas con la ayuda de nuestra comunidad dedicada de expertos en nuestra plataforma. Explora nuestra plataforma de preguntas y respuestas para encontrar respuestas detalladas proporcionadas por una amplia gama de expertos en diversas áreas.
Sagot :
Aquí van algunos ejemplos donde se puede comprobar el número de oro o áureo:
- La disposición de los pétalos de las flores (el papel del número áureo en la botánica recibe el nombre de Ley de Ludwig).
La distribución de las hojas en un tallo. Ver: Sucesión de Fibonacci.
- La relación entre las nervaduras de las hojas de los árboles.
- La relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias (el grosor de una equivale a Φ tomando como unidad la rama superior).
- La cantidad de espirales de una piña (ocho y trece espirales), flores o inflorescencias. Estos números son elementos de la sucesión de Fibonacci y el cociente de dos elementos consecutivos tiende al número áureo. 11 12
- La cantidad de pétalos en las flores. Existen flores con 3, 5 y 8 pétalos y también con 13, 21, 34, 55, 89 y 144.
- La distribución de las hojas de la yuca y la disposición de las hojas de las alcachofas.
- La relación entre la distancia entre las espiras del interior espiralado de cualquier caracol o de cefalópodos como el nautilus. Hay por lo menos tres espirales logarítmicas más o menos asimilables a proporciones aúreas. La primera de ellas se caracteriza por la relación constante igual al número áureo entre los radiovectores de puntos situados en dos evolutas consecutivas en una misma dirección y sentido. Las conchas del Fusus antiquus, del Murex, de Scalaria pretiosa, de Facelaria y de Solarium trochleare, entre otras, siguen este tipo de espiral de crecimiento.
- En la cantidad de elementos constituyentes de las espirales o dobles espirales de las inflorescencias, como en el caso del girasol.
- La disposición de los pétalos de las flores (el papel del número áureo en la botánica recibe el nombre de Ley de Ludwig).
La distribución de las hojas en un tallo. Ver: Sucesión de Fibonacci.
- La relación entre las nervaduras de las hojas de los árboles.
- La relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias (el grosor de una equivale a Φ tomando como unidad la rama superior).
- La cantidad de espirales de una piña (ocho y trece espirales), flores o inflorescencias. Estos números son elementos de la sucesión de Fibonacci y el cociente de dos elementos consecutivos tiende al número áureo. 11 12
- La cantidad de pétalos en las flores. Existen flores con 3, 5 y 8 pétalos y también con 13, 21, 34, 55, 89 y 144.
- La distribución de las hojas de la yuca y la disposición de las hojas de las alcachofas.
- La relación entre la distancia entre las espiras del interior espiralado de cualquier caracol o de cefalópodos como el nautilus. Hay por lo menos tres espirales logarítmicas más o menos asimilables a proporciones aúreas. La primera de ellas se caracteriza por la relación constante igual al número áureo entre los radiovectores de puntos situados en dos evolutas consecutivas en una misma dirección y sentido. Las conchas del Fusus antiquus, del Murex, de Scalaria pretiosa, de Facelaria y de Solarium trochleare, entre otras, siguen este tipo de espiral de crecimiento.
- En la cantidad de elementos constituyentes de las espirales o dobles espirales de las inflorescencias, como en el caso del girasol.
Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Gracias por confiar en Revelroom.ca. Vuelve a visitarnos para obtener nuevas respuestas de los expertos.