Revelroom.ca es el mejor lugar para obtener respuestas rápidas y precisas a todas tus preguntas. Conéctate con profesionales en nuestra plataforma para recibir respuestas precisas a tus preguntas de manera rápida y eficiente. Descubre un vasto conocimiento de profesionales en diferentes disciplinas en nuestra amigable plataforma de preguntas y respuestas.
Sagot :
Solución a
Primero se debe hallar la pendiente de la recta que pasa por los puntos (4,1) y (-2,2), debido a que si la recta que pasa por el punto (2,-3) es paralela a ella entonces tienen la misma pendiente y se puede usar la ecuación punto pendiente para determinar la ecuación de dicha recta.
La pendiente m es igual a
m= (2-1)/(-2-4)
m=1 / (-6)
m=-1/6
De allí que la ecuación de la recta será igual a
(y-(-3)) = (-1/6) (x-2)
O lo que es igual
Ecuación de la recta (punto pendiente)
y+3 = -(1/6) (x-2)
Solución b
Clasificando el triángulo por la medida de sus lados tenemos
que calcular esa medida usando la fórmula de distancia entre dos puntos.
Distancia AB = Raíz(( 0 - 0)^2 + ( 3 - 6)^2)
Distancia AB = 3
Distancia BC = Raíz ((3 - 0) ^2 + (6 - 3)^2)
Distancia BC = Raíz (18)
Distancia AC = Raíz(( 3 -0)^2 + (6 - 6)^2)
Distancia AC = 3
Por eso el triángulo es isósceles, ya que tiene dos lados
iguales y uno diferente.
Solución c
Para la forma de la ecuación de la recta se tiene que y = mx + b donde m es la pendiente, b es el punto de intersección con el eje y
Llevando la ecuación 3x + 2y - 7 = 0a esta forma, tenemos que.
y = (-3/2) x + 7/2
Es decir que la pendiente de la recta es
m= -3/2
Y el punto de intersección con el eje y es
b= 7/2
Solución d
Si la recta pasa por los puntos A (1,2) y B (-2,5)
Eso quiere decir que su pendiente m es igual a
m= (5 - 2) / ( -2 - 1)
De allí que
m=-1
Ahora bien, usando la ecuación punto pendiente se tiene que la recta es
y - 2 = -1 ( x - 1)
Solución e
Si la recta para por el punto A(1,5) y es paralela a la
recta s: 2x + y + 2 = 0, se sabe que al ser paralelas tienen la misma
pendiente, de allí, tomamos la ecuación de la recta y la llevamos a una forma
donde podamos ver su pendiente, obteniendo
y = - 2x - 2
Eso quiere decir que su pendiente es m = -2
Y como la recta buscada ya sabemos que tiene pendiente -2 y tenemos un punto
por donde pasa, usamos la fórmula de punto pendiente y nos queda
y - 5 = -2(x - 1)
Solución f
Para este ejercicio debemos igualar las pendientes de las
rectas
De la recta se tiene que r: ny= -3x + 7
De ahí que
y= (-3/n) x + 7 / n
Por lo tanto
m(r) = -3/n
Ahora bien, de la recta s: 2Y= - mx + 13
Tenemos que
y = (-m / 2) x + 13/2
De ahí que
m(s) = -m / 2
Ahora bien, igualando ambas rectas
- 3/n = - m/2
Ahora bien, sabemos que r pasa por el punto A(3,2), con eso podemos concluir
que:
y = -3/n + 7/n
Sustituyendo por los valores del punto
2 = -3/n (3) + 7/n
Luego tenemos
2 = -9 /n + 7/n
De ahí que
2 = -2 /n
Por lo que n=-1
Ahora, si n=-1, sustituyendo en la ecuación que relaciona n con m, tenemos que
m = -6
Espero haber sido de ayuda, saludos…
Gracias por utilizar nuestro servicio. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus preguntas. Visítanos nuevamente para obtener más información. Gracias por tu visita. Nos dedicamos a ayudarte a encontrar la información que necesitas, siempre que la necesites. Revelroom.ca está aquí para tus preguntas. No olvides regresar para obtener nuevas respuestas.