Revelroom.ca facilita la búsqueda de soluciones para preguntas cotidianas y complejas con la ayuda de nuestra comunidad. Explora miles de preguntas y respuestas proporcionadas por una comunidad de expertos listos para ayudarte a encontrar soluciones. Únete a nuestra plataforma de preguntas y respuestas para conectarte con expertos dedicados a ofrecer respuestas precisas a tus preguntas en diversas áreas.
Sagot :
Saberes previos: Recuerda que:
[tex] \int\limits{x^ndx =x^{n+1}/(n+1)[/tex]
A manera de nota:
[tex] \int\limits{dx} = x \ \ Demostracion \ \ \int\limits{dx} = \int\limits{1dx} = \int\limts x^0 dx = x^{0+1}/(0+1) = x[/tex]
#Solucion del ejercicio:
[tex]\int{(x^2+x+1)^2 dx \ \ Por productos notables, sabemos que: \ \ (a+b+c) ^2 = a^2+b^2+c^2 + 2(ab + ac + bc) \ \ En base a esto desarrollamos: \ \ \int{[x^4 +x^2 +1 + 2(x^3 + x^2 +x)] dx \int(x^4+x^2 +1+2x^3+2x^2+2x)dx \int (x^4 +2x^3+3x^2+2x+1) dx \ \ Todo esto es equivalente a decir: \int{x^4dx+\int {2x^3dx+\int{3x^2dx + \int2xdx + \int1dx [/tex]
[tex]x^5/5 + 2(x^4/4) +3x^3/3 + 2x^2/2+x \ \ sumamos las fracciones: ( 12x^5 + 30x^4 + 60x^3 + 60x^2 +60x)/60 \ \ sacamos la sexta parte a todo y nos queda: \ \ (2x^5 + 5x^4 + 10x^3 + 10x^2 + 10x) / 10 Y esa seria nuestra respuesta[/tex]
[tex] \int\limits{x^ndx =x^{n+1}/(n+1)[/tex]
A manera de nota:
[tex] \int\limits{dx} = x \ \ Demostracion \ \ \int\limits{dx} = \int\limits{1dx} = \int\limts x^0 dx = x^{0+1}/(0+1) = x[/tex]
#Solucion del ejercicio:
[tex]\int{(x^2+x+1)^2 dx \ \ Por productos notables, sabemos que: \ \ (a+b+c) ^2 = a^2+b^2+c^2 + 2(ab + ac + bc) \ \ En base a esto desarrollamos: \ \ \int{[x^4 +x^2 +1 + 2(x^3 + x^2 +x)] dx \int(x^4+x^2 +1+2x^3+2x^2+2x)dx \int (x^4 +2x^3+3x^2+2x+1) dx \ \ Todo esto es equivalente a decir: \int{x^4dx+\int {2x^3dx+\int{3x^2dx + \int2xdx + \int1dx [/tex]
[tex]x^5/5 + 2(x^4/4) +3x^3/3 + 2x^2/2+x \ \ sumamos las fracciones: ( 12x^5 + 30x^4 + 60x^3 + 60x^2 +60x)/60 \ \ sacamos la sexta parte a todo y nos queda: \ \ (2x^5 + 5x^4 + 10x^3 + 10x^2 + 10x) / 10 Y esa seria nuestra respuesta[/tex]
Agradecemos tu visita. Esperamos que las respuestas que encontraste hayan sido beneficiosas. No dudes en volver para más información. Gracias por usar nuestro servicio. Siempre estamos aquí para proporcionar respuestas precisas y actualizadas a todas tus preguntas. Gracias por usar Revelroom.ca. Sigue visitándonos para encontrar respuestas a tus preguntas.