Descubre respuestas a tus preguntas en Revelroom.ca, la plataforma de Q&A más confiable y eficiente para todas tus necesidades. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable.

En certo cultivo, el número de bacterias se duplica cada dia. Si hay 1000 bacterias, ¿Cuántas habrá dentro de seis días?

Sagot :

preju
Lo que tienes ahí es una progresión geométrica donde cada término se halla multiplicando por 2 el anterior (se duplica diariamente).

Para saber la respuesta a ese problema has de sumar el valor de los 6 términos de que consta esa progresión (son 6 términos porque nos habla del sexto día como término final)

Pero antes de saber la suma de términos es necesario saber la expresión del término general (an) que genera dicha progresión y para ello tenemos la fórmula:

an = a₁ • r ⁿ⁻¹
siendo a
₁ = 1000,   r = 2 ... por tanto, sustituyendo ahí tengo esto:

an = 1000 • 2ⁿ⁻¹   =   1000 • 2ⁿ • 2⁻¹   =  
    1000 • 2ⁿ
= ———— = 500 • 2ⁿ  (aquí tengo el término general de la progresión)
        2¹

Veamos si es cierto dando valores a "n"...

Para n = 1 -----> a₁ = 500 • 2¹ = 1000 ... ok
Para n = 2 -----> a₂ = 500 • 2² = 2000 ... ok
Para n = 3 -----> a
₃ = 500 • 2³ = 4000 ... ok ... etc.

Siendo el término general correcto, hallo el término a

a₆ = 500 • 2⁶ = 32000

Ahora es cuando hay que recurrir a la fórmula que nos da la suma de términos de cualquier progresión (Sn) que dice:

         an • r –a₁       32000 • 2 –1000
Sn = ————— = ———————— = 63.000 bacterias habrá el sexto día     
              r
–1                   2–1

Saludos.