Obtén soluciones a tus preguntas en Revelroom.ca, la plataforma de Q&A más rápida y precisa. Únete a nuestra plataforma de preguntas y respuestas y conéctate con profesionales dispuestos a ofrecer respuestas precisas a tus dudas. Haz tus preguntas y recibe respuestas detalladas de profesionales con amplia experiencia en diversos campos.
Sagot :
Es un problema de valor máximo, con lo que habrá que ver cuál es la función a optimizar. En este caso lo que hay que optimizar es el perímetro (suma de los 3 lados). Dado que la hipotenusa es 7, nombraremos los otros dos lados como [tex]x[/tex] e [tex]y[/tex]. Por lo tanto, la función perímetro es [tex]P(x,y)=7+x+y[/tex]. Como sólo puede quedar 1 sola incógnita, necesitamos otra relación: el triángulo es rectángulo, luego se puede dar el teorema de Pitágoras: [tex]7^2=x^2+y^2 [/tex]. De aquí sacamos el valor de [tex]y[/tex]:
[tex]y^2=49-x^2\to y=\sqrt{49-x^2}[/tex].
Ahora este valor lo cambiamos en nuestra función a optimizar:
[tex]P(x)=7+x+\sqrt{49-x^2}[/tex]
Para calcular el óptimo, hay que derivar e igualar a cero:
[tex]P'(x)=0+1+\frac{-2x}{2\sqrt{49-x^2}}\to P'(x)=1-\frac{x}{\sqrt{49-x^2}}[/tex]
Igualando a cero:
[tex]1=\frac{x}{\sqrt{49-x^2}}[/tex]
Elevando ambos miembros al cuadrado se va la raíz:
[tex]1=\frac{x^2}{49-x^2}\to 49-x^2=x^2\to 2x^2=49\to x^2=\frac{49}{2}\to x=+\frac{7}{\sqrt{2}}=+\frac{7\sqrt{2}}{2}[/tex]
Dado que este valor no es entero, tenemos que ver a cuál se aproxima. Para ello, con ayuda de la calculadora, [tex]x=4,94\to \boxed{x=5}[/tex] es la aproximación del óptimo.
[tex]y^2=49-x^2\to y=\sqrt{49-x^2}[/tex].
Ahora este valor lo cambiamos en nuestra función a optimizar:
[tex]P(x)=7+x+\sqrt{49-x^2}[/tex]
Para calcular el óptimo, hay que derivar e igualar a cero:
[tex]P'(x)=0+1+\frac{-2x}{2\sqrt{49-x^2}}\to P'(x)=1-\frac{x}{\sqrt{49-x^2}}[/tex]
Igualando a cero:
[tex]1=\frac{x}{\sqrt{49-x^2}}[/tex]
Elevando ambos miembros al cuadrado se va la raíz:
[tex]1=\frac{x^2}{49-x^2}\to 49-x^2=x^2\to 2x^2=49\to x^2=\frac{49}{2}\to x=+\frac{7}{\sqrt{2}}=+\frac{7\sqrt{2}}{2}[/tex]
Dado que este valor no es entero, tenemos que ver a cuál se aproxima. Para ello, con ayuda de la calculadora, [tex]x=4,94\to \boxed{x=5}[/tex] es la aproximación del óptimo.
Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Nos enorgullece proporcionar respuestas en Revelroom.ca. Vuelve a visitarnos para obtener más información.