Descubre respuestas a tus preguntas en Revelroom.ca, la plataforma de Q&A más confiable y eficiente para todas tus necesidades. Conéctate con profesionales en nuestra plataforma para recibir respuestas precisas a tus preguntas de manera rápida y eficiente. Únete a nuestra plataforma para obtener respuestas fiables a tus interrogantes gracias a una amplia comunidad de expertos.
Sagot :
Función Cuadrática. Características
Una función de la forma:
f (x) = a x ² + b x + c
con a, b y c pertenecientes a los reales y a diferente de 0, es una función cuadrática y su gráfico es una curva llamada parábola.
En la ecuación cuadrática sus términos se llaman:
ax2 + bx + c = 0
ax2 termino cuadratico
bx termino lineal
c termimo independiente
si la ecuación tiene todos los términos se dice ecuación completa, si a la función le falta el término lineal o independiente se dice que la ecuación es incompleta.
Estas curvas tienen ciertos elementos que la identifican
Raíces
Las raíces ( o ceros) de la función cuadrática son aquellos valores de x para los cuales la expresión vale 0, es decir los valores de x tales que y = 0. Gráficamente corresponden a las abscisas de los puntos donde la parábola corta al eje x. Podemos ver a continuación que existen parábolas que cortan al eje x en:
Prueba con el simulador anterior como varían las raíces de la función cambiando los valores de los términos
Para poder calcular las raíces de cualquier función cuadrática calculamos f (x) = 0, entonces
ax² + bx +c = 0
Pero para resolver ax² + bx +c = 0 observamos que no podemos aplicar las propiedades de las ecuaciones, ésta tiene la particularidad de poseer un término de segundo grado, otro de primer grado y un término constante. Entonces, para resolverla podemos hacer uso de la fórmula:
al resultado de la cuenta b2 - 4ac se lo llama discriminante de la ecuación, esta operación presenta distintas posibilidades:
Si b2 - 4ac > 0 tenemos dos soluciones posibles.
Si b2 - 4ac = 0 el resultado de la raíz será 0, con lo cual la ecuación tiene una sola solución real.
Si b2 - 4ac < 0 la raíz no puede resolverse, con lo cual la ecuación no tendrá solución real.
Entonces, si la ecuación esta completa ya sabemos como calcular las raíces (con la fórmula) y si la ecuación es incompleta solo basta despejar la variable x de la ecuación:
1er caso: ax2 + bx = 0
2do caso: ax2 + c = 0
Simetría
La parábola presenta simetría respecto a una cierta recta vertical. Es decir, si conocemos dos puntos del gráfico (x1, p) y (x2, p), el eje de simetría pasará por el punto medio entre estos, o sea
Vértice
El vértice de la parábola está ubicado sobre la recta de simetría, de modo que su coordenada x, que notaremos xv vale:
Conocida la coordenada x de un punto, su correspondiente coordenada y se calcula reemplazando el valor de x en la expresión de la función.
En el vértice se calcula el máximo ( o el mínimo) valor de la función de acuerdo a que la parábola tenga sus ramas para abajo o para arriba (lo veremos a continuación).
Si la parábola no tiene raíces el vértice se puede calcular utilizando los coeficientes de la función de la siguiente manera:
Concavidad
Otra característica es si la parábola es cóncava o convexa:
En el siguiente simulador cambia los valores de a, dándole valores positivos y valores negativos.
También suele decirse que:
Si a > 0 la parábola es cóncava o con ramas hacia arriba.
Si a < 0 la parábola es convexa o con ramas hacia abajo.
Gracias por usar nuestra plataforma. Nuestro objetivo es proporcionar respuestas precisas y actualizadas para todas tus preguntas. Vuelve pronto. Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Tus preguntas son importantes para nosotros. Regresa regularmente a Revelroom.ca para obtener más respuestas.