Obtén las mejores soluciones a tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable. Haz tus preguntas y recibe respuestas detalladas de profesionales con amplia experiencia en diversos campos.
Sagot :
Hola!
Dado que [tex]\pi<\alpha<\frac{3\pi}2\to \alpha\in III[/tex].
Por otro lado, de la relación fundamental de la trigonometría
[tex]sen^2(\alpha)+cos^2(\alpha)=1[/tex], si divides todo por [tex]cos^2(\alpha)[/tex], te aparece la tangente, para que puedas cambiarla por su valor:
[tex]tg^2(\alpha)+1=sec^2(\alpha)[/tex]
Dado que en el III cuadrante seno y coseno son negativos y la tangente es positiva, hay que tener en cuenta estos signos para el resultado.
Aplicando la última ecuación con [tex]tg(\alpha)=2\to 2^2+1=sec^2(\alpha)\to sec^2(\alpha)=5\to sec(\alpha)=\sqrt5[/tex]
Pero [tex]sec(\alpha)=\frac1{cos(\alpha)}=\sqrt5\to cos(\alpha)=\frac{\pm1}{\sqrt5}[/tex]
Y aplicando la verdadera relación fundamental de la trigonometría, cambias del valor del coseno al del seno:
[tex]sen^2(\alpha)=1-cos^2(\alpha)=1-\frac15=\frac45\to sen^2(\alpha)=\frac45\to sen(\alpha)=\frac{\pm2}{\sqrt5}[/tex]
Faltaría elegir los signos de las razones y racionalizar, que eso te lo dejo a ti.
Saludos y estudiate esta que suele caer en todos los exámenes.
Dado que [tex]\pi<\alpha<\frac{3\pi}2\to \alpha\in III[/tex].
Por otro lado, de la relación fundamental de la trigonometría
[tex]sen^2(\alpha)+cos^2(\alpha)=1[/tex], si divides todo por [tex]cos^2(\alpha)[/tex], te aparece la tangente, para que puedas cambiarla por su valor:
[tex]tg^2(\alpha)+1=sec^2(\alpha)[/tex]
Dado que en el III cuadrante seno y coseno son negativos y la tangente es positiva, hay que tener en cuenta estos signos para el resultado.
Aplicando la última ecuación con [tex]tg(\alpha)=2\to 2^2+1=sec^2(\alpha)\to sec^2(\alpha)=5\to sec(\alpha)=\sqrt5[/tex]
Pero [tex]sec(\alpha)=\frac1{cos(\alpha)}=\sqrt5\to cos(\alpha)=\frac{\pm1}{\sqrt5}[/tex]
Y aplicando la verdadera relación fundamental de la trigonometría, cambias del valor del coseno al del seno:
[tex]sen^2(\alpha)=1-cos^2(\alpha)=1-\frac15=\frac45\to sen^2(\alpha)=\frac45\to sen(\alpha)=\frac{\pm2}{\sqrt5}[/tex]
Faltaría elegir los signos de las razones y racionalizar, que eso te lo dejo a ti.
Saludos y estudiate esta que suele caer en todos los exámenes.
Visítanos nuevamente para obtener respuestas actualizadas y confiables. Siempre estamos listos para ayudarte con tus necesidades informativas. Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Visita Revelroom.ca para obtener nuevas y confiables respuestas de nuestros expertos.