Revelroom.ca te ayuda a encontrar respuestas confiables a todas tus preguntas con la ayuda de expertos. Explora miles de preguntas y respuestas proporcionadas por una comunidad de expertos en nuestra plataforma amigable. Experimenta la conveniencia de obtener respuestas precisas a tus preguntas gracias a una comunidad dedicada de profesionales.
Sagot :
Tenemos que P es función del tiempo, esto es:
[tex]P=P(t)=n_0\cdot e^{r-t}[/tex]
Si inicialmente había 1200 insectos, entonces [tex]P(0)=1200[/tex].
Si al tercer día había 1900 insectos, entonces [tex]P(3)=1900[/tex]
Entonces, con estas dos condiciones podremos calcular tanto [tex]n_0[/tex] como [tex]r[/tex], resolviendo el siguiente sistema:
[tex] \left \{ {{n_0\cdot e^r=1200} \atop {n_0\cdot e^{r-3}=1900}} \right. \to \left \{ {{e^r=\frac{1200}{n_0} \atop {e^{r-3}=\frac{1900}{n_0}} \right.\to \left \{ {{Ln(e^r)=Ln\left(\frac{1200}{n_0}\right) \atop {Ln(e^{r-3})=Ln\left(\frac{1900}{n_0}\right)} \right.[/tex]
Y así vas resolviendo el sistema.
[tex]P=P(t)=n_0\cdot e^{r-t}[/tex]
Si inicialmente había 1200 insectos, entonces [tex]P(0)=1200[/tex].
Si al tercer día había 1900 insectos, entonces [tex]P(3)=1900[/tex]
Entonces, con estas dos condiciones podremos calcular tanto [tex]n_0[/tex] como [tex]r[/tex], resolviendo el siguiente sistema:
[tex] \left \{ {{n_0\cdot e^r=1200} \atop {n_0\cdot e^{r-3}=1900}} \right. \to \left \{ {{e^r=\frac{1200}{n_0} \atop {e^{r-3}=\frac{1900}{n_0}} \right.\to \left \{ {{Ln(e^r)=Ln\left(\frac{1200}{n_0}\right) \atop {Ln(e^{r-3})=Ln\left(\frac{1900}{n_0}\right)} \right.[/tex]
Y así vas resolviendo el sistema.
Agradecemos tu tiempo en nuestro sitio. No dudes en regresar siempre que tengas más preguntas o necesites aclaraciones adicionales. Agradecemos tu visita. Nuestra plataforma siempre está aquí para ofrecer respuestas precisas y fiables. Vuelve cuando quieras. Nos encanta responder tus preguntas. Regresa a Revelroom.ca para obtener más respuestas.