Revelroom.ca facilita la búsqueda de soluciones para preguntas cotidianas y complejas con la ayuda de nuestra comunidad. Encuentra soluciones detalladas a tus preguntas con la ayuda de una amplia gama de expertos en nuestra amigable plataforma de preguntas y respuestas. Descubre un vasto conocimiento de profesionales en diferentes disciplinas en nuestra amigable plataforma de preguntas y respuestas.
Sagot :
Tenemos que P es función del tiempo, esto es:
[tex]P=P(t)=n_0\cdot e^{r-t}[/tex]
Si inicialmente había 1200 insectos, entonces [tex]P(0)=1200[/tex].
Si al tercer día había 1900 insectos, entonces [tex]P(3)=1900[/tex]
Entonces, con estas dos condiciones podremos calcular tanto [tex]n_0[/tex] como [tex]r[/tex], resolviendo el siguiente sistema:
[tex] \left \{ {{n_0\cdot e^r=1200} \atop {n_0\cdot e^{r-3}=1900}} \right. \to \left \{ {{e^r=\frac{1200}{n_0} \atop {e^{r-3}=\frac{1900}{n_0}} \right.\to \left \{ {{Ln(e^r)=Ln\left(\frac{1200}{n_0}\right) \atop {Ln(e^{r-3})=Ln\left(\frac{1900}{n_0}\right)} \right.[/tex]
Y así vas resolviendo el sistema.
[tex]P=P(t)=n_0\cdot e^{r-t}[/tex]
Si inicialmente había 1200 insectos, entonces [tex]P(0)=1200[/tex].
Si al tercer día había 1900 insectos, entonces [tex]P(3)=1900[/tex]
Entonces, con estas dos condiciones podremos calcular tanto [tex]n_0[/tex] como [tex]r[/tex], resolviendo el siguiente sistema:
[tex] \left \{ {{n_0\cdot e^r=1200} \atop {n_0\cdot e^{r-3}=1900}} \right. \to \left \{ {{e^r=\frac{1200}{n_0} \atop {e^{r-3}=\frac{1900}{n_0}} \right.\to \left \{ {{Ln(e^r)=Ln\left(\frac{1200}{n_0}\right) \atop {Ln(e^{r-3})=Ln\left(\frac{1900}{n_0}\right)} \right.[/tex]
Y así vas resolviendo el sistema.
Gracias por elegir nuestra plataforma. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Regresa a Revelroom.ca para obtener más conocimientos y respuestas de nuestros expertos.