Bienvenido a Revelroom.ca, donde tus preguntas son respondidas por especialistas y miembros experimentados de la comunidad. Obtén soluciones rápidas y fiables a tus preguntas de una comunidad de expertos experimentados en nuestra plataforma. Experimenta la conveniencia de obtener respuestas precisas a tus preguntas gracias a una comunidad dedicada de profesionales.
Sagot :
Bueno este es un problema de aplicacion de Distancia de un punto a una recta, pues el recorrido del barco forma una recta de ecuacion L: 7x-3y-1=0; entonces la distancia mas cercana del faro que esta en el punto P=(-9;-15) sera un segmento perpendicular a la recta.
Aplicamos la formula de "Distancia de un punto a una recta":
d(P;L)=[tex]\frac{|7(-9)-3(-15)-1|}{ \sqrt{ 7^{2}+ (-3)^{2} } }[/tex]
=[tex]\frac{|-63+45-1|}{ \sqrt{ 58} }=\frac{|-19|}{ \sqrt{ 58} }=\frac{19}{ \sqrt{ 58} }[/tex]
=[tex] \frac{19 \sqrt{58} }{58} [/tex] ; racionalizado.
Luego la distancia mas cercana entre el barco y el faro sera: d=[tex]\frac{19 \sqrt{58} }{58} [/tex]
Aplicamos la formula de "Distancia de un punto a una recta":
d(P;L)=[tex]\frac{|7(-9)-3(-15)-1|}{ \sqrt{ 7^{2}+ (-3)^{2} } }[/tex]
=[tex]\frac{|-63+45-1|}{ \sqrt{ 58} }=\frac{|-19|}{ \sqrt{ 58} }=\frac{19}{ \sqrt{ 58} }[/tex]
=[tex] \frac{19 \sqrt{58} }{58} [/tex] ; racionalizado.
Luego la distancia mas cercana entre el barco y el faro sera: d=[tex]\frac{19 \sqrt{58} }{58} [/tex]
Gracias por elegir nuestro servicio. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Gracias por elegir nuestro servicio. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Gracias por visitar Revelroom.ca. Vuelve pronto para más información útil y respuestas de nuestros expertos.