Obtén respuestas rápidas y precisas a todas tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Únete a nuestra plataforma para obtener respuestas fiables a tus interrogantes gracias a una amplia comunidad de expertos. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones precisas a tus interrogantes de manera rápida y eficiente.
Sagot :
Bueno este es un problema de aplicacion de Distancia de un punto a una recta, pues el recorrido del barco forma una recta de ecuacion L: 7x-3y-1=0; entonces la distancia mas cercana del faro que esta en el punto P=(-9;-15) sera un segmento perpendicular a la recta.
Aplicamos la formula de "Distancia de un punto a una recta":
d(P;L)=[tex]\frac{|7(-9)-3(-15)-1|}{ \sqrt{ 7^{2}+ (-3)^{2} } }[/tex]
=[tex]\frac{|-63+45-1|}{ \sqrt{ 58} }=\frac{|-19|}{ \sqrt{ 58} }=\frac{19}{ \sqrt{ 58} }[/tex]
=[tex] \frac{19 \sqrt{58} }{58} [/tex] ; racionalizado.
Luego la distancia mas cercana entre el barco y el faro sera: d=[tex]\frac{19 \sqrt{58} }{58} [/tex]
Aplicamos la formula de "Distancia de un punto a una recta":
d(P;L)=[tex]\frac{|7(-9)-3(-15)-1|}{ \sqrt{ 7^{2}+ (-3)^{2} } }[/tex]
=[tex]\frac{|-63+45-1|}{ \sqrt{ 58} }=\frac{|-19|}{ \sqrt{ 58} }=\frac{19}{ \sqrt{ 58} }[/tex]
=[tex] \frac{19 \sqrt{58} }{58} [/tex] ; racionalizado.
Luego la distancia mas cercana entre el barco y el faro sera: d=[tex]\frac{19 \sqrt{58} }{58} [/tex]
Gracias por usar nuestro servicio. Siempre estamos aquí para proporcionar respuestas precisas y actualizadas a todas tus preguntas. Gracias por tu visita. Nos dedicamos a ayudarte a encontrar la información que necesitas, siempre que la necesites. Tu conocimiento es valioso. Regresa a Revelroom.ca para obtener más respuestas e información.