Bienvenido a Revelroom.ca, donde puedes obtener respuestas confiables y rápidas con la ayuda de nuestros expertos. Únete a nuestra plataforma para conectarte con expertos dispuestos a ofrecer respuestas detalladas a tus preguntas en diversas áreas. Únete a nuestra plataforma de preguntas y respuestas para conectarte con expertos dedicados a ofrecer respuestas precisas a tus preguntas en diversas áreas.

AYUDA CON ESTO LO NECESITO PARA MEÑANA EN LA NOCHE.
El extremo de un segmento de recta es el punto A(2,-4). Si la ordenada del otro extremo es 3/2 de su abscisa, determine las coordenadas del punto, si la longitud del segmento es de 2[tex] \sqrt{26} [/tex] unidades.

GRACIAS


Sagot :

Usa el vector. Sea B(x,y) el otro extremo del segmento. Entonces, la longitud del segmento es igual al módulo del vector. Para calcular las coordenadas del vector hay que restar las del punto (eso ya lo sabrás).
Así que manos a la obra:
Tenemos A(2, -4) y [tex]B(\frac32,y)[/tex]. Entonces el vector es [tex]\vec{v}=(\frac32-2, y-(-4))=(\frac{-1}2,y+4)[/tex]. Entonces, si el módulo (longitud del segmento) es [tex]\sqrt{26}=\|\vec v\|=\sqrt{\left(\frac{-1}{2}\right)^2+(y+4)^2}=\sqrt{\frac14+y^2+8y+16}[/tex]
[tex]\to 26=y^2+8y+16+\frac14\to 4y^2+32y+64+1-104=0\to 4y^2+32y-41=0[/tex]
Al resolver esta ecuación te salen dos posibles coordenadas y del punto B. Te dejo a ti para terminarlo. Saludos! .
Solución:
Según el enunciado de tu ejercicio dice que la ordenada del otro extremo es 3/2 de su abscisa, luego el punto a buscar es (x , 3/2x) donde la abscisa es x y la ordenada es 3/2x, ahora si se puede encontrar tanto la abscisa y la ordenada, con la Fórmula de distancia, así:
..................._____________________
=> d(AB) = V(x - 2)^2 + ( 3/2x -(-4))^2  
...................________________________
=> d(AB) = V(x^2 - 4x + 4 + (3/2x + 4)^2  
....................____________________________
=> d(AB) = V(x^2 - 4x + 4 + 9/4x^2 + 12x + 16)
..........___............._________________
=> (2V(26))^2 = ( V(13/4 x^2 + 8x + 20) )^2

=> 104 = 13/4x^2 + 8x + 20
Esta es una ecuación cuadrática que se resuelve con la fórmula:

=> 13/4x^2 + 8x + 20 - 104 = 0

=> 13/4x^2 + 8x  - 84 = 0 ......(Multiplicando por 4 ambos lados)

=> 13x^2 + 32x - 336 = 0 ......Donde: a = 13, b = 32, c= -336

.......................________________
=> X = [-32 +- V(32^2 - 4(13)(-336)) ] / 2(13)
........................_____________
=> X = [ -32 +- V(1024 + 17472) ] / 26
........................_______
=> X = [ -32 +- V(18496) ] / 26

=> X = [ -32 +- (136) ] / 26

=> X(1) = (-32 + 136) / 26 => X(1) = 104/26 => X(1)= 4

=> X(2) = (-32 - 136) / 26 => X(2)= -168/26 => X(2)=- 84/13 Se rechaza esta solución porque las longitudes no son negativas:

Respuesta: abscisa => x = 4 y Ordenada = 3/2(4) => Y = 6
Por lo tanto el punto a buscar es B (4, 6)

Espero haberte ayudado. suerte.