Bienvenido a Revelroom.ca, donde puedes obtener respuestas confiables y rápidas con la ayuda de nuestros expertos. Encuentra soluciones rápidas y fiables a tus dudas gracias a una comunidad de expertos dedicados. Explora un vasto conocimiento de profesionales en diferentes disciplinas en nuestra completa plataforma de preguntas y respuestas.
Sagot :
Hay que plantear un sistema de 3 ecuaciones con 3 incógnitas. Vamos por partes:
Digamos que primero realiza el trayecto en sentido A ---> B y a los tramos en subida, llano y bajada los llamo así:
Suma de tramos de subida: x
Suma de tramos de llano: y
Suma de tramos de bajada: z
La primera ecuación la monto basándome en la fórmula que relaciona espacio-velocidad-tiempo, donde despejando el tiempo tengo:
Tiempo = Espacio / Velocidad ... y aplicando esto al ejercicio puedo plantear que...
Tiempo empleado en subidas: x/54
Tiempo empleado en llano: y/80
Tiempo empleado en bajadas: z/90
Obviamente, la suma de esos tiempos debe resultarme el total de tiempo empleado en realizar el trayecto A ---> B, así que:
(x/54) + (y/80) + (z/90) = 2,5 (dos horas y 30 minutos pero en sistema decimal)
La segunda ecuación es un poco la inversa de la primera ya que ahora le doy la vuelta al trayecto y supongo que lo hace en sentido B --> A, por tanto, lo que antes eran subidas ahora serán bajadas y viceversa y el llano continuará siendo el mismo. Así pues...
(x/90) + (y/80) + (z/54) = 2,75 (dos horas y tres cuartos pero en decimal)
Finalmente la tercera ecuación la extraigo de saber el total de km. del trayecto que son 192 km. (no pongas Km/h porque eso sería velocidad) y digo que:
x + y + z = 192 ... voilà !!!
ya tengo el sistema planteado. Ahora sólo hay que resolverlo y espero que sepas hacerlo ya que si te han puesto el ejercicio es porque estaréis con esa temática. Si no lo sabes hacer, me dejas un comentario aquí y me pondré a ello. Es que aquí en España ya es muy tarde, cerca de medianoche, y me toca irme a la cama.
Saludos.
Digamos que primero realiza el trayecto en sentido A ---> B y a los tramos en subida, llano y bajada los llamo así:
Suma de tramos de subida: x
Suma de tramos de llano: y
Suma de tramos de bajada: z
La primera ecuación la monto basándome en la fórmula que relaciona espacio-velocidad-tiempo, donde despejando el tiempo tengo:
Tiempo = Espacio / Velocidad ... y aplicando esto al ejercicio puedo plantear que...
Tiempo empleado en subidas: x/54
Tiempo empleado en llano: y/80
Tiempo empleado en bajadas: z/90
Obviamente, la suma de esos tiempos debe resultarme el total de tiempo empleado en realizar el trayecto A ---> B, así que:
(x/54) + (y/80) + (z/90) = 2,5 (dos horas y 30 minutos pero en sistema decimal)
La segunda ecuación es un poco la inversa de la primera ya que ahora le doy la vuelta al trayecto y supongo que lo hace en sentido B --> A, por tanto, lo que antes eran subidas ahora serán bajadas y viceversa y el llano continuará siendo el mismo. Así pues...
(x/90) + (y/80) + (z/54) = 2,75 (dos horas y tres cuartos pero en decimal)
Finalmente la tercera ecuación la extraigo de saber el total de km. del trayecto que son 192 km. (no pongas Km/h porque eso sería velocidad) y digo que:
x + y + z = 192 ... voilà !!!
ya tengo el sistema planteado. Ahora sólo hay que resolverlo y espero que sepas hacerlo ya que si te han puesto el ejercicio es porque estaréis con esa temática. Si no lo sabes hacer, me dejas un comentario aquí y me pondré a ello. Es que aquí en España ya es muy tarde, cerca de medianoche, y me toca irme a la cama.
Saludos.
Agradecemos tu tiempo. Por favor, vuelve cuando quieras para obtener la información más reciente y respuestas a tus preguntas. Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Revelroom.ca, tu sitio de referencia para respuestas precisas. No olvides regresar para obtener más conocimientos.