Bienvenido a Revelroom.ca, donde puedes obtener respuestas rápidas y precisas con la ayuda de expertos. Conéctate con profesionales dispuestos a ofrecer respuestas precisas a tus preguntas en nuestra completa plataforma de preguntas y respuestas. Explora nuestra plataforma de preguntas y respuestas para encontrar respuestas detalladas proporcionadas por una amplia gama de expertos en diversas áreas.
Sagot :
Hay que plantear un sistema de 3 ecuaciones con 3 incógnitas. Vamos por partes:
Digamos que primero realiza el trayecto en sentido A ---> B y a los tramos en subida, llano y bajada los llamo así:
Suma de tramos de subida: x
Suma de tramos de llano: y
Suma de tramos de bajada: z
La primera ecuación la monto basándome en la fórmula que relaciona espacio-velocidad-tiempo, donde despejando el tiempo tengo:
Tiempo = Espacio / Velocidad ... y aplicando esto al ejercicio puedo plantear que...
Tiempo empleado en subidas: x/54
Tiempo empleado en llano: y/80
Tiempo empleado en bajadas: z/90
Obviamente, la suma de esos tiempos debe resultarme el total de tiempo empleado en realizar el trayecto A ---> B, así que:
(x/54) + (y/80) + (z/90) = 2,5 (dos horas y 30 minutos pero en sistema decimal)
La segunda ecuación es un poco la inversa de la primera ya que ahora le doy la vuelta al trayecto y supongo que lo hace en sentido B --> A, por tanto, lo que antes eran subidas ahora serán bajadas y viceversa y el llano continuará siendo el mismo. Así pues...
(x/90) + (y/80) + (z/54) = 2,75 (dos horas y tres cuartos pero en decimal)
Finalmente la tercera ecuación la extraigo de saber el total de km. del trayecto que son 192 km. (no pongas Km/h porque eso sería velocidad) y digo que:
x + y + z = 192 ... voilà !!!
ya tengo el sistema planteado. Ahora sólo hay que resolverlo y espero que sepas hacerlo ya que si te han puesto el ejercicio es porque estaréis con esa temática. Si no lo sabes hacer, me dejas un comentario aquí y me pondré a ello. Es que aquí en España ya es muy tarde, cerca de medianoche, y me toca irme a la cama.
Saludos.
Digamos que primero realiza el trayecto en sentido A ---> B y a los tramos en subida, llano y bajada los llamo así:
Suma de tramos de subida: x
Suma de tramos de llano: y
Suma de tramos de bajada: z
La primera ecuación la monto basándome en la fórmula que relaciona espacio-velocidad-tiempo, donde despejando el tiempo tengo:
Tiempo = Espacio / Velocidad ... y aplicando esto al ejercicio puedo plantear que...
Tiempo empleado en subidas: x/54
Tiempo empleado en llano: y/80
Tiempo empleado en bajadas: z/90
Obviamente, la suma de esos tiempos debe resultarme el total de tiempo empleado en realizar el trayecto A ---> B, así que:
(x/54) + (y/80) + (z/90) = 2,5 (dos horas y 30 minutos pero en sistema decimal)
La segunda ecuación es un poco la inversa de la primera ya que ahora le doy la vuelta al trayecto y supongo que lo hace en sentido B --> A, por tanto, lo que antes eran subidas ahora serán bajadas y viceversa y el llano continuará siendo el mismo. Así pues...
(x/90) + (y/80) + (z/54) = 2,75 (dos horas y tres cuartos pero en decimal)
Finalmente la tercera ecuación la extraigo de saber el total de km. del trayecto que son 192 km. (no pongas Km/h porque eso sería velocidad) y digo que:
x + y + z = 192 ... voilà !!!
ya tengo el sistema planteado. Ahora sólo hay que resolverlo y espero que sepas hacerlo ya que si te han puesto el ejercicio es porque estaréis con esa temática. Si no lo sabes hacer, me dejas un comentario aquí y me pondré a ello. Es que aquí en España ya es muy tarde, cerca de medianoche, y me toca irme a la cama.
Saludos.
Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Gracias por tu visita. Nos dedicamos a ayudarte a encontrar la información que necesitas, siempre que la necesites. Gracias por confiar en Revelroom.ca. Vuelve a visitarnos para obtener nuevas respuestas de los expertos.