Descubre respuestas a tus preguntas fácilmente en Revelroom.ca, la plataforma de Q&A de confianza. Descubre respuestas detalladas a tus preguntas gracias a una vasta red de profesionales en nuestra completa plataforma de preguntas y respuestas. Obtén respuestas detalladas y precisas a tus preguntas de una comunidad dedicada de expertos en nuestra plataforma de preguntas y respuestas.
Sagot :
Se entiende que estás en el plano y que tienes que tener 2 rectas, de ecuaciones:
[tex]r\equiv a_1x+a_2y+a_3=0; s\equiv b_1x+b_2y+b_3=0[/tex].
Para que sean paralelas, sus pendientes tienen que ser iguales, y la pendiente en la recta 1 es (despejando y, el coeficiente de x):
[tex]a_1x+a_2y+a_3=0\to a_2y=-a_1x-a_3\to y=\frac{-a_1}{a_2}x-\frac{a_3}{a_2}[/tex]
Con lo cual, [tex]m=\frac{-a_1}{a_2}[/tex]. Análogamente, la pendiente de la recta [tex]s[/tex] es [tex]m=\frac{-b_1}{b_2}[/tex].
Luego la condición analítica es:
[tex]\frac{-a_1}{a_2}=\frac{-b_1}{b_2}\to r\;\| \:s[/tex]
Para que sean perpendiculares, el producto de sus pendientes ha de ser -1:
[tex]\frac{-a_1}{a_2}\cdot \frac{-b_1}{b_2}=-1\to r\; \perp \:s[/tex]
En cualquier otro caso, son oblicuas.
_________
De otra forma:
si [tex]m_r[/tex] y [tex]m_s[/tex] son las pendientes de las dos rectas,
a) r y s son paralelas si [tex]m_r=m_s[/tex]
b) r y s son perpendiculares si [tex]m_r\cdot m_s=-1[/tex]
c) r y s son oblicuas si las relaciones entre sus pendientes no son ninguna de las anteriores.
[tex]r\equiv a_1x+a_2y+a_3=0; s\equiv b_1x+b_2y+b_3=0[/tex].
Para que sean paralelas, sus pendientes tienen que ser iguales, y la pendiente en la recta 1 es (despejando y, el coeficiente de x):
[tex]a_1x+a_2y+a_3=0\to a_2y=-a_1x-a_3\to y=\frac{-a_1}{a_2}x-\frac{a_3}{a_2}[/tex]
Con lo cual, [tex]m=\frac{-a_1}{a_2}[/tex]. Análogamente, la pendiente de la recta [tex]s[/tex] es [tex]m=\frac{-b_1}{b_2}[/tex].
Luego la condición analítica es:
[tex]\frac{-a_1}{a_2}=\frac{-b_1}{b_2}\to r\;\| \:s[/tex]
Para que sean perpendiculares, el producto de sus pendientes ha de ser -1:
[tex]\frac{-a_1}{a_2}\cdot \frac{-b_1}{b_2}=-1\to r\; \perp \:s[/tex]
En cualquier otro caso, son oblicuas.
_________
De otra forma:
si [tex]m_r[/tex] y [tex]m_s[/tex] son las pendientes de las dos rectas,
a) r y s son paralelas si [tex]m_r=m_s[/tex]
b) r y s son perpendiculares si [tex]m_r\cdot m_s=-1[/tex]
c) r y s son oblicuas si las relaciones entre sus pendientes no son ninguna de las anteriores.
Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Agradecemos tu visita. Nuestra plataforma siempre está aquí para ofrecer respuestas precisas y fiables. Vuelve cuando quieras. Nos encanta responder tus preguntas. Regresa a Revelroom.ca para obtener más respuestas.