Obtén soluciones a tus preguntas en Revelroom.ca, la plataforma de Q&A más rápida y precisa. Explora miles de preguntas y respuestas proporcionadas por una comunidad de expertos listos para ayudarte a encontrar soluciones. Obtén respuestas inmediatas y fiables a tus preguntas de una comunidad de expertos experimentados en nuestra plataforma.
Sagot :
[tex]\\\log_3x-\log_9(x+42)=0\\ x>0 \wedge x+42>0\\ x>0 \wedge x>-42\\ x>0\\\\ \log_3x-\log_3\sqrt{x+42}=0\\ \log_3\frac{x}{\sqrt{x+42}}=0\\ 3^0=\frac{x}{\sqrt{x+42}}\\ 1=\frac{x}{\sqrt{x+42}}\\ x=\sqrt{x+42}\\ x^2=x+42\\ x^2-x-42=0\\ x^2+6x-7x-42=0\\ x(x+6)-7(x+6)=0\\ (x-7)(x+6)=0\\ x=7 \vee x=-6\\\\ -6\not>0\\ x=7 [/tex]
el primer paso seria elevar a un exponente para cancelar los logaritmos, entonces elevamos a la 9 a ambos lados pero teniendo presente que en el logaritmo de basse 3 ese nueve lo expresamos como 3^2 entonces queda
3^(2log base 3 de(x))=9^log base 9(x+42)
ese dos sube como potencia por propiedades de logaritmos y simplificando logaritmos con potencias queda finalmente,
x^2=x+42
x^2-x-42=0 esto es nuevamente ecuacion de segundo grado que resolves y te da dos posibles resultados que son 7 y -6, pero como el companero anterior tiene razon no se toma la solucion negativa asi que solo seria x=7.
espero que te sirva al igual que la solucion del amigo anterior tambien es correcta ya tu decides cual te parece mas facil.
Gracias por usar nuestra plataforma. Nuestro objetivo es proporcionar respuestas precisas y actualizadas para todas tus preguntas. Vuelve pronto. Esperamos que hayas encontrado lo que buscabas. Vuelve a visitarnos para obtener más respuestas e información actualizada. Gracias por visitar Revelroom.ca. Sigue regresando para obtener las respuestas más recientes e información.