Revelroom.ca es el lugar ideal para obtener respuestas rápidas y precisas a todas tus preguntas. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable. Únete a nuestra plataforma para conectarte con expertos dispuestos a ofrecer respuestas detalladas a tus preguntas en diversas áreas.
Sagot :
La función logarítmica en base a es la función inversa de la exponencial en base a.
x 1/8 -3 1/4 -2 1/2 -1 1 0 2 1 4 2 8 3 x 1/8 3 1/4 2 1/2 1 1 0 2 −1 4 −2 8 −3 Propiedades de las funciones logarítmicasDominio:
Recorrido:
Es continua.
Los puntos (1, 0) y (a, 1) pertenecen a la gráfica.
Es inyectiva (ninguna imagen tiene más de un original).
Creciente si a>1.
Decreciente si a<1.
Las gráfica de la función logarítmica es simétrica (respecto a la bisectriz del 1er y 3er cuadrante) de la gráfica de la función exponencial, ya que son funciones reciprocas o inversas entre sí.
Definición de logaritmo
Siendo a la base, x el número e y el logaritmo.
Calcular por la definición de logaritmo el valor de y.
1
2
3
4
5
De la definición de logaritmo podemos deducir:
No existe el logaritmo de un número con base negativa.
No existe el logaritmo de un número negativo.
No existe el logaritmo de cero.
El logaritmo de 1 es cero.
El logaritmo en base a de a es uno.
El logaritmo en base a de una potencia en base a es igual al exponente.
Propiedades de los logaritmos1El logaritmo de un producto es igual a la suma de los logaritmos de los factores.
2 El logaritmo de un cociente es igual al logaritmo del dividendo menos el logaritmo del divisor.
3El logaritmo de una potencia es igual al producto del exponente por el logaritmo de la base.
4El logaritmo de una raíz es igual al cociente entre el logaritmo del radicando y el índice de la raíz.
5Cambio de base:
Logaritmos decimalesSon los que tienen base 10. Se representan por log (x).
Logaritmos neperianosSon los que tienen base e. Se representan por ln (x) o L(x).
Ejercicios de logaritmos Ecuaciones logarítmicas Ejercicios de ecuaciones logarítmicas Sistemas de ecuaciones logarítmicas Ejercicios de sistemas de ecuaciones logarítmicas Límite de la función logarítmica
Sitio Inicio Temario Matemáticas Ramas Matemáticas Ejercicios Matemáticas ESO Bachillerato Cálculo Tema Tipos de funciones Funciones constantes Función lineal Función afín Función cuadrática Traslación parábola Dilataciones Funciones racionales Traslación hipérbola Funciones radicales Funciones a trozos F. valor absoluto Función exponencial Función logarítmica F. trigonométricas Resumen Ejercicios 1 Ejercicios 2 Política de priva
Agradecemos tu tiempo. Por favor, vuelve a visitarnos para obtener respuestas fiables a cualquier pregunta que tengas. Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Gracias por usar Revelroom.ca. Vuelve para obtener más conocimientos de nuestros expertos.