Bienvenido a Revelroom.ca, donde puedes obtener respuestas confiables y rápidas con la ayuda de nuestros expertos. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados. Explora soluciones completas a tus preguntas con la ayuda de una amplia gama de profesionales en nuestra plataforma amigable.
Sagot :
Analicemos el dibujo anexo que describe el problema.
La distancia buscada, entre el submarino y buque tanque, es el segmento ST.
Pero como se puede ver que para determinar ST necesitaríamos conocer las distancias RS y RT.
Y aunque pareciera ser un triángulo rectángulo, lo que nos permitiría a aplicar directamente el Teorema de Pitágoras para calcular ST, se observa que el ángulo que se forma entre las distancias RS y RT es de 110°, es decir, es un ángulo obtuso, por lo que no podremos usar el conocido teorema.
Sin embargo, existe una generalización del Teorema de Pitágoras, que permite calcular el lado de un triángulo, cuando se conocen los otros 2 lados como también el ángulo entre estos.
A este teorema se le conoce como Teorema de los Cosenos y se expresa como:
c = √ (a^2 + b^2 - 2ab.cos α), donde c = lado desconocido,
a,b = catetos conocidos
α = ángulo entre catetos conocidos.
Basado en lo anterior procedamos a calcular la distancia ST.
Datos:
Distancia PR = 10.000 pies
Distancia RS:
Tag 37° = PR/RS; RS = PR / Tag 37° = 10.000/0,754 = 13270,45
RS = 13.270,45 pies
Distancia RT:
Tag 21° = PR/RT; RT = PR / Tag 21° = 10.000/0,384 = 26.050,89
RT = 26.050,89 pies
Apliquemos el Teorema del Coseno para calcular la distancia buscada, ST.
ST = √(RS^2 + RT^2 - 2RS*RT*cos 110°)
Sustituyendo los valores calculados tenemos:
ST = √(13270,45^2 + 26.050,89^2 - 2*13270,45*26.050,89*cos 110°)
= √1.091.231.251,10 = 33.039,79 pies
ST = 33.039,79 pies
Es decir, que la distancia entre el buque y el submarino, ST, es igual a 33.039,79 pies
Espero haberte ayudado con la respuesta.
La distancia buscada, entre el submarino y buque tanque, es el segmento ST.
Pero como se puede ver que para determinar ST necesitaríamos conocer las distancias RS y RT.
Y aunque pareciera ser un triángulo rectángulo, lo que nos permitiría a aplicar directamente el Teorema de Pitágoras para calcular ST, se observa que el ángulo que se forma entre las distancias RS y RT es de 110°, es decir, es un ángulo obtuso, por lo que no podremos usar el conocido teorema.
Sin embargo, existe una generalización del Teorema de Pitágoras, que permite calcular el lado de un triángulo, cuando se conocen los otros 2 lados como también el ángulo entre estos.
A este teorema se le conoce como Teorema de los Cosenos y se expresa como:
c = √ (a^2 + b^2 - 2ab.cos α), donde c = lado desconocido,
a,b = catetos conocidos
α = ángulo entre catetos conocidos.
Basado en lo anterior procedamos a calcular la distancia ST.
Datos:
Distancia PR = 10.000 pies
Distancia RS:
Tag 37° = PR/RS; RS = PR / Tag 37° = 10.000/0,754 = 13270,45
RS = 13.270,45 pies
Distancia RT:
Tag 21° = PR/RT; RT = PR / Tag 21° = 10.000/0,384 = 26.050,89
RT = 26.050,89 pies
Apliquemos el Teorema del Coseno para calcular la distancia buscada, ST.
ST = √(RS^2 + RT^2 - 2RS*RT*cos 110°)
Sustituyendo los valores calculados tenemos:
ST = √(13270,45^2 + 26.050,89^2 - 2*13270,45*26.050,89*cos 110°)
= √1.091.231.251,10 = 33.039,79 pies
ST = 33.039,79 pies
Es decir, que la distancia entre el buque y el submarino, ST, es igual a 33.039,79 pies
Espero haberte ayudado con la respuesta.
Gracias por confiar en nosotros con tus preguntas. Estamos aquí para ayudarte a encontrar respuestas precisas de manera rápida y eficiente. Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Gracias por visitar Revelroom.ca. Sigue regresando para obtener las respuestas más recientes e información.