Revelroom.ca te ayuda a encontrar respuestas confiables a todas tus preguntas con la ayuda de expertos. Encuentra soluciones rápidas y fiables a tus dudas gracias a una comunidad de expertos dedicados. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones a tus preguntas de manera rápida y precisa.
Sagot :
A ver si puedo con él.
Habrá que plantear un sistema de 2 ecuaciones con dos incógnitas, una será el primer término que llamaré "a" y la otra incógnita será la diferencia "d" que aparece en cualquier sucesión ya que es el número que se suma o resta a un término para conseguir el siguiente.
Así pues tendremos los términos:
a₁ = a
a₂ = a+d
a₃ = a+d+d = a+2d
También tenemos el dato de que disponemos de 3 términos, es decir que la progresión consta de n = 3 ... y por tanto, el término a₃ (a subtres) = an (a subene)
Identificados los términos y la diferencia, aplico la fórmula de suma de términos de una progresión aritmética:
Sn = (a₁+an)·n / 2 ...sustituyendo por lo de arriba...
Sn = [a+(a+2d)]·3 / 2 ... y como sabemos que Sn = 12 se plantea:
[a+(a+2d)]·3 / 2 = 12 ---------------> 1ª ecuación que se desarrolla...
(2a + 2d)·3 / 2 = 12 -----> (6a + 6d) / 2 = 12 ----> 6a + 6d = 24 ... dividiendo por 6 ...
a+d = 4 ... despejando "d" -------> d = 4-a
La segunda ecuación es más sencilla de ver ya que se basa en los cuadrados de los términos y será:
a² + (a+d)² + (a+2d)² = 66 ... desarrollando los binomios al cuadrado...
a² + a² + d² +2ad + a² +4d² + 4ad = 66 -----> 3a² + 5d² + 6ad -66 = 0
Método de sustitución. Sustituyo el valor de "d" de la primera en la segunda...
3a² + 5·(4-a)² + 6a(4-a) -66 = 0 -----> 3a² + 5·(16+a²-8a) +24a -6a² -66 = 0 ----->
3a² + 80 + 5a² -40a +24a -6a² -66 = 0 -------> 2a² -16a +14 = 0 ... divido por 2 ...
a² -8a +7 = 0 ... aplico fórmula general...
________
–b ± √ b² – 4ac
A = ▬▬▬▬▬▬▬ ... de donde salen las raíces...
2a
A₁ = (8+6)/2 = 7
A₂ = (8-6)/2 = 1
Voilà!!! Salió biennnn!!!
Esas raíces nos están dando el valor del primer término y el del tercero ya que la diferencia "d" será 3, así que los términos buscados serán:
1 , 4 , 7 ... que sumados nos dan 12. Comprobada la primera parte.
Compruebo ahora la segunda parte. La suma de sus cuadrados es 66
1² + 4² + 7² = 1+16+49 = 66 ... Comprobado también.
Casi era más complicado y laborioso desarrollar el sistema de ecuaciones que deducir las mismas.
Saludos.
Habrá que plantear un sistema de 2 ecuaciones con dos incógnitas, una será el primer término que llamaré "a" y la otra incógnita será la diferencia "d" que aparece en cualquier sucesión ya que es el número que se suma o resta a un término para conseguir el siguiente.
Así pues tendremos los términos:
a₁ = a
a₂ = a+d
a₃ = a+d+d = a+2d
También tenemos el dato de que disponemos de 3 términos, es decir que la progresión consta de n = 3 ... y por tanto, el término a₃ (a subtres) = an (a subene)
Identificados los términos y la diferencia, aplico la fórmula de suma de términos de una progresión aritmética:
Sn = (a₁+an)·n / 2 ...sustituyendo por lo de arriba...
Sn = [a+(a+2d)]·3 / 2 ... y como sabemos que Sn = 12 se plantea:
[a+(a+2d)]·3 / 2 = 12 ---------------> 1ª ecuación que se desarrolla...
(2a + 2d)·3 / 2 = 12 -----> (6a + 6d) / 2 = 12 ----> 6a + 6d = 24 ... dividiendo por 6 ...
a+d = 4 ... despejando "d" -------> d = 4-a
La segunda ecuación es más sencilla de ver ya que se basa en los cuadrados de los términos y será:
a² + (a+d)² + (a+2d)² = 66 ... desarrollando los binomios al cuadrado...
a² + a² + d² +2ad + a² +4d² + 4ad = 66 -----> 3a² + 5d² + 6ad -66 = 0
Método de sustitución. Sustituyo el valor de "d" de la primera en la segunda...
3a² + 5·(4-a)² + 6a(4-a) -66 = 0 -----> 3a² + 5·(16+a²-8a) +24a -6a² -66 = 0 ----->
3a² + 80 + 5a² -40a +24a -6a² -66 = 0 -------> 2a² -16a +14 = 0 ... divido por 2 ...
a² -8a +7 = 0 ... aplico fórmula general...
________
–b ± √ b² – 4ac
A = ▬▬▬▬▬▬▬ ... de donde salen las raíces...
2a
A₁ = (8+6)/2 = 7
A₂ = (8-6)/2 = 1
Voilà!!! Salió biennnn!!!
Esas raíces nos están dando el valor del primer término y el del tercero ya que la diferencia "d" será 3, así que los términos buscados serán:
1 , 4 , 7 ... que sumados nos dan 12. Comprobada la primera parte.
Compruebo ahora la segunda parte. La suma de sus cuadrados es 66
1² + 4² + 7² = 1+16+49 = 66 ... Comprobado también.
Casi era más complicado y laborioso desarrollar el sistema de ecuaciones que deducir las mismas.
Saludos.
Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Tus preguntas son importantes para nosotros. Sigue regresando a Revelroom.ca para obtener más respuestas.