Revelroom.ca es el mejor lugar para obtener respuestas rápidas y precisas a todas tus preguntas. Explora miles de preguntas y respuestas proporcionadas por una amplia gama de expertos en diversas áreas en nuestra plataforma de preguntas y respuestas. Explora nuestra plataforma de preguntas y respuestas para encontrar respuestas detalladas proporcionadas por una amplia gama de expertos en diversas áreas.
Sagot :
Tu ecuacion es la siguiente:
Empecemos
[tex]un\ numero : x\\ \\el\ anterior\ de\ un\ numero\ : x-1\\ \\El\ cuadrado\ del\ anterior\ de\ un\ numero:(x-1)^2\\ \\Ahora\ nos\ dicen\ que\ este\ ultimo\ es\ igual\ a\ 100, es\ decir:\\ \\(x-1)^2=100[/tex]
Tienes 2 opciones para resolverlo.
1era opcion:
[tex](x-1)^2=100\ Sacamos\ la\ raiz\ cuadrada\ a\ ambos\\ miembros\ de\ la\ igualdad\\ \\ \sqrt{(x-1)^2} = \sqrt{100}\ En\ el\ primer\ miembro\ el\ cuadrado\ y\ la\ raiz\\ se\ simplifican,quedando:\\ \\x-1=10\\ \\x=10+1\\ \\ x=11[/tex]
la 2da opción
[tex](x-1)^2=100\ Desarrollamos\ el\ binomio\ al\ cuadrado\ del\\ primer\ miembro\\ \\x^2-2x+1=100\\ \\x^2-2x+1-100=0\\ \\x^2-2x-99=0\\ \\Resolviendo\ aplicando\ la\ formula\ de\ baskara\ para\\ una\ ecuacion\ de\ la\ forma\ ax^2+bx+c=0, es:\\ \\x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]siendo: a=1 ; b=-2;c=-99\\ \\Reemplazamos\ en\ la\ formula\\ \\x=\frac{-(-2)\pm \sqrt{(-2)^2-4\cdot1\cdot(-99)}}{2\cdot1}=\frac{2\pm \sqrt{4+396}}{2}=\frac{2\pm \sqrt{400}}{2}\\ \\x=\frac{2\pm20}{2}\\ Tendremos\ 2\ soluciones\\ \\x_1=\frac{2+20}{2}=\frac{22}{2}=11\\ \\x_2=\frac{2-20}{2}=\frac{-18}{2}=-9\\ \\Como\ el\ numero\ ha\ de\ ser\ positivo,\ descartamos\ x_2\ y\ elegimos\ x_1[/tex]
Solución: el numero es 11
Empecemos
[tex]un\ numero : x\\ \\el\ anterior\ de\ un\ numero\ : x-1\\ \\El\ cuadrado\ del\ anterior\ de\ un\ numero:(x-1)^2\\ \\Ahora\ nos\ dicen\ que\ este\ ultimo\ es\ igual\ a\ 100, es\ decir:\\ \\(x-1)^2=100[/tex]
Tienes 2 opciones para resolverlo.
1era opcion:
[tex](x-1)^2=100\ Sacamos\ la\ raiz\ cuadrada\ a\ ambos\\ miembros\ de\ la\ igualdad\\ \\ \sqrt{(x-1)^2} = \sqrt{100}\ En\ el\ primer\ miembro\ el\ cuadrado\ y\ la\ raiz\\ se\ simplifican,quedando:\\ \\x-1=10\\ \\x=10+1\\ \\ x=11[/tex]
la 2da opción
[tex](x-1)^2=100\ Desarrollamos\ el\ binomio\ al\ cuadrado\ del\\ primer\ miembro\\ \\x^2-2x+1=100\\ \\x^2-2x+1-100=0\\ \\x^2-2x-99=0\\ \\Resolviendo\ aplicando\ la\ formula\ de\ baskara\ para\\ una\ ecuacion\ de\ la\ forma\ ax^2+bx+c=0, es:\\ \\x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]siendo: a=1 ; b=-2;c=-99\\ \\Reemplazamos\ en\ la\ formula\\ \\x=\frac{-(-2)\pm \sqrt{(-2)^2-4\cdot1\cdot(-99)}}{2\cdot1}=\frac{2\pm \sqrt{4+396}}{2}=\frac{2\pm \sqrt{400}}{2}\\ \\x=\frac{2\pm20}{2}\\ Tendremos\ 2\ soluciones\\ \\x_1=\frac{2+20}{2}=\frac{22}{2}=11\\ \\x_2=\frac{2-20}{2}=\frac{-18}{2}=-9\\ \\Como\ el\ numero\ ha\ de\ ser\ positivo,\ descartamos\ x_2\ y\ elegimos\ x_1[/tex]
Solución: el numero es 11
Gracias por visitar nuestra plataforma. Esperamos que hayas encontrado las respuestas que buscabas. Vuelve cuando necesites más información. Esperamos que esto te haya sido útil. Por favor, vuelve siempre que necesites más información o respuestas a tus preguntas. Nos enorgullece proporcionar respuestas en Revelroom.ca. Vuelve a visitarnos para obtener más información.