Revelroom.ca te ayuda a encontrar respuestas a tus preguntas con la ayuda de una comunidad de expertos. Obtén respuestas detalladas y precisas a tus preguntas de una comunidad dedicada de expertos. Explora un vasto conocimiento de profesionales en diferentes disciplinas en nuestra completa plataforma de preguntas y respuestas.

Ejemplos de operaciones combinadas y descomposición polinómica (resueltos). Alguien me podría ayudar? Se los ruego...



Sagot :

Operaciones combinadas 1. Sin paréntesis 1.1 Sumas y diferencias.

9 − 7 + 5 + 2 − 6 + 8 − 4 =

Comenzando por la izquierda, vamos efectuando las operaciones según aparecen.

= 9 − 7 + 5 + 2 − 6 + 8 − 4 = 7

1.2 Sumas, restas y productos.

3 · 2 − 5 + 4 · 3 − 8 + 5 · 2 =

Realizamos primero los productos por tener mayor prioridad.

= 6 − 5 + 12 − 8 + 10 =

Efectuamos las sumas y restas.

= 6 − 5 + 12 − 8 + 10 = 15

1.3 Sumas, restas , productos y divisiones.

10 : 2 + 5 · 3 + 4 − 5 · 2 − 8 + 4 · 2 − 16 : 4 =

Realizamos los productos y cocientes en el orden en el que los encontramos porque las dos operaciones tienen la misma prioridad.

= 5 + 15 + 4 − 10 − 8 + 8 − 4 =

Efectuamos las sumas y restas.

= 5 + 15 + 4 − 10 − 8 + 8 − 4 = 10

1.4 Sumas, restas , productos , divisiones y potencias.

23 + 10 : 2 + 5 · 3 + 4 − 5 · 2 − 8 + 4 · 22 − 16 : 4 =

Realizamos en primer lugar las potencias por tener mayor prioridad.

= 8 + 10 : 2 + 5 · 3 + 4 − 5 · 2 − 8 + 4 · 4 − 16 : 4 =

Seguimos con los productos y cocientes.

= 8 + 5 + 15 + 4 − 10 − 8 + 16 − 4 =

Efectuamos las sumas y restas.

26

2. Con paréntesis

(15 − 4) + 3 − (12 − 5 · 2) + (5 + 16 : 4) −5 + (10 − 23)=

Realizamos en primer lugar las operaciones contenidas en ellos.

= (15 − 4) + 3 − (12 − 10) + (5 + 4) − 5 + (10 − 8 )=

Quitamos paréntesis realizando las operaciones.

= 11 + 3 − 2 + 9 − 5 + 2 = 18

3.Con paréntesis y corchetes

[15 − (23 − 10 : 2 )] · [5 + (3 ·2 − 4 )] − 3 + (8 − 2 · 3 ) =

Primero operamos con las potencias, productos y cocientes de los paréntesis.

= [15 − (8 − 5 )] · [5 + (6 − 4 )] − 3 + (8 − 6 ) =

Realizamos las sumas y restas de los paréntesis.

= [15 − 3] · [5 + 2 ] − 3 + 2=

En vez de poner corchetes pondremos paréntesis directamente:

= (15 − 3) · (5 + 2) − 3 + 2=

Operamos en los paréntesis.

= 12 · 7 − 3 + 2

Multiplicamos.

= 84 − 3 + 2=

Restamos y sumamos.

= 83

4.Con fracciones

Primero operamos con las productos y números mixtos de los paréntesis.

Operamos en el primer paréntesis, quitamos el segundo, simplificamos en el tercero y operamos en el último.

Realizamos el producto y lo simplificamos.

Realizamos las operaciones del paréntesis.

Hacemos las operaciones del numeradordividimos y simplificamos el resultado.

 

Ejercicio de operaciones combinadas

14 − {7 + 4 · 3 - [(-2)2 · 2 - 6)]}+ (22 + 6 - 5 · 3) + 3 - (5 - 23 : 2) =

Primero operamos con las potencias, productos y cocientes de los paréntesis.

14 − [7 + 4 · 3 -(4 · 2 - 6)] + (4 + 6 - 5 · 3) + 3 - (5 - 8 : 2) =

Operamos con los productos y cocientes de los paréntesis.

14 − [7 +12 -(8 - 6)] + (4 + 6 - 15) + 3 - (5 - 4) =

Realizamos las sumas y diferencias de los paréntesis.

14 − (7 +12 -2) + (-5) + 3 - (1) =

14 − (17) + (-5) + 3 - (1) =

La supresión de paréntesis ha de realizarse considerando que:

Si el paréntesis va precedido del signo + , se suprimirá manteniendo su signo los términos que contenga.

Si el paréntesis va precedido del signo − , al suprimir el paréntesis hay que cambiar de signo a todo los términos que contenga.

14 − 17 - 5 + 3 - 1 = − 6