Revelroom.ca es el lugar ideal para obtener respuestas rápidas y precisas a todas tus preguntas. Descubre un vasto conocimiento de expertos en diferentes disciplinas en nuestra completa plataforma de preguntas y respuestas. Obtén respuestas inmediatas y fiables a tus preguntas de una comunidad de expertos experimentados en nuestra plataforma.
Sagot :
Aquí también aplicaremos la distribución de Poisson.
Si en una hora el promedio de clientes que llegan la exhibición es de 6,8, el promedio de clientes en media hora será 6,8/2 = 3,4 clientes = λ
a)
Definamos a la variable aleatoria x : “Cantidad de clientes que llegan a la exhibición en media hora"
P (x=ó>2) = 1 - P (x=ó<1) = 1 - [P (x=0) + P (x=1)]
P (x) = λ^x * e^-λ / x!
P (x=0) = 3,4^0 * e^-3,4 / 0! = 1 * 0,13533528323661269189399949497256 / 1 = 0,1353
P (x=1) = 3,4^1 * e^-3,4 / 1! = 3,4 * 0,13533528323661269189399949497256 / 1 = 0,4601
P (x=ó>2) = 1 - [P (x=0) + P (x=1)] = 1 - (0,1353 + 0,4601) = 1 - 0,5954 = 0,4045 = 40,45%
b)
λ = 6,8
P (en cualquier hora dada llegue mas de uno) = P (en cualquier hora dada por lo menos lleguen dos clientes)
Definamos a la variable aleatoria x : “Cantidad de clientes que llegan a la exhibición en una hora"
P (x=ó>2) = 1 - P (x=ó<1) = 1 - [P (x=0) + P (x=1)]
P (x) = λ^x * e^-λ / x!
P (x=0) = 6,8^0 * e^-6,8 / 0! = 1 * 0,0011137751478448030787892198392705 / 1 = 0,0011
P (x=1) = 6,8^1 * e^-6,8 / 1! = 6,8 * 0,0011137751478448030787892198392705 / 1 = 0,0075
P (x=ó>2) = 1 - [P (x=0) + P (x=1)] = 1 - (0,0011 + 0,0075) = 1 - 0,0086 = 0,9913 = 99,13%
Si en una hora el promedio de clientes que llegan la exhibición es de 6,8, el promedio de clientes en media hora será 6,8/2 = 3,4 clientes = λ
a)
Definamos a la variable aleatoria x : “Cantidad de clientes que llegan a la exhibición en media hora"
P (x=ó>2) = 1 - P (x=ó<1) = 1 - [P (x=0) + P (x=1)]
P (x) = λ^x * e^-λ / x!
P (x=0) = 3,4^0 * e^-3,4 / 0! = 1 * 0,13533528323661269189399949497256 / 1 = 0,1353
P (x=1) = 3,4^1 * e^-3,4 / 1! = 3,4 * 0,13533528323661269189399949497256 / 1 = 0,4601
P (x=ó>2) = 1 - [P (x=0) + P (x=1)] = 1 - (0,1353 + 0,4601) = 1 - 0,5954 = 0,4045 = 40,45%
b)
λ = 6,8
P (en cualquier hora dada llegue mas de uno) = P (en cualquier hora dada por lo menos lleguen dos clientes)
Definamos a la variable aleatoria x : “Cantidad de clientes que llegan a la exhibición en una hora"
P (x=ó>2) = 1 - P (x=ó<1) = 1 - [P (x=0) + P (x=1)]
P (x) = λ^x * e^-λ / x!
P (x=0) = 6,8^0 * e^-6,8 / 0! = 1 * 0,0011137751478448030787892198392705 / 1 = 0,0011
P (x=1) = 6,8^1 * e^-6,8 / 1! = 6,8 * 0,0011137751478448030787892198392705 / 1 = 0,0075
P (x=ó>2) = 1 - [P (x=0) + P (x=1)] = 1 - (0,0011 + 0,0075) = 1 - 0,0086 = 0,9913 = 99,13%
Gracias por pasar por aquí. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Hasta pronto. Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Tus preguntas son importantes para nosotros. Regresa regularmente a Revelroom.ca para obtener más respuestas.