Descubre respuestas a tus preguntas en Revelroom.ca, la plataforma de Q&A más confiable y eficiente para todas tus necesidades. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados. Conéctate con una comunidad de expertos dispuestos a ofrecer soluciones precisas a tus preguntas de manera rápida y eficiente en nuestra amigable plataforma de preguntas y respuestas.
Sagot :
Por lo que
veo en el desarrollo debes demostrar que ambas son iguales no?
Bueno, debes recordar las siguientes igualdades básicas:
* 1 = sen^2 +cos^2
* tanx= senx/cosx
*sen2x= 2senxcosx
(1+sen2x/1-sen2x)= (tanx+1/tanx-1)^2
- reemplazamos las identidades
[ (senx)^2+(cosx)^2+ sen2x] / [(senx)^2+ (cosx)2- sen2x]= [ (senx/cosx +1) / (senx/cosx – 1) ]^2
Recuerda que el sen2x= 2senxcosx
[ (senx)^2+(cosx)^2+ 2senxcosx] / [(senx)^2+ (cosx)2- 2senxcosx] = [ (senx/cosx +1) / (senx/cosx – 1) ]^2
si te fijas bien [ (senx)^2+(cosx)^2+ 2senxcosx], es un polinomio conocido de forma a^2+b^2 +2ab =(a+b)^2
entonces aplicando análogamente, [ (senx)^2+(cosx)^2+ 2senxcosx] = (senx+cosx)^2
De la misma manera (senx)^2+ (cosx)2- 2senxcosx = (senx-cosx)^2
Ademas, senx/cosx+1 = senx+cosx/cosx
senx/cosx -1 = senx-cosx/cosx
aplicando extremos y medios quedaría [ (senx+cosx)/(senx-cosx) ]^2 , no olvidar que estaba elevado al cuadrado.
entonces:
[ (senx)^2+(cosx)^2+ 2senxcosx] / [(senx)^2+ (cosx)2- 2senxcosx] = [ (senx/cosx +1) / (senx/cosx – 1) ]^2
(senx+cosx)^2/ (senx-cosx)^2 = ([ (senx+cosx)/(senx-cosx) ]^2
los cuadrados se van y queda finalmente la siguiente igualdad :
(senx+cosx) / (senx-cosx) = (senx+cosx)/(senx-cosx)
Bueno, debes recordar las siguientes igualdades básicas:
* 1 = sen^2 +cos^2
* tanx= senx/cosx
*sen2x= 2senxcosx
(1+sen2x/1-sen2x)= (tanx+1/tanx-1)^2
- reemplazamos las identidades
[ (senx)^2+(cosx)^2+ sen2x] / [(senx)^2+ (cosx)2- sen2x]= [ (senx/cosx +1) / (senx/cosx – 1) ]^2
Recuerda que el sen2x= 2senxcosx
[ (senx)^2+(cosx)^2+ 2senxcosx] / [(senx)^2+ (cosx)2- 2senxcosx] = [ (senx/cosx +1) / (senx/cosx – 1) ]^2
si te fijas bien [ (senx)^2+(cosx)^2+ 2senxcosx], es un polinomio conocido de forma a^2+b^2 +2ab =(a+b)^2
entonces aplicando análogamente, [ (senx)^2+(cosx)^2+ 2senxcosx] = (senx+cosx)^2
De la misma manera (senx)^2+ (cosx)2- 2senxcosx = (senx-cosx)^2
Ademas, senx/cosx+1 = senx+cosx/cosx
senx/cosx -1 = senx-cosx/cosx
aplicando extremos y medios quedaría [ (senx+cosx)/(senx-cosx) ]^2 , no olvidar que estaba elevado al cuadrado.
entonces:
[ (senx)^2+(cosx)^2+ 2senxcosx] / [(senx)^2+ (cosx)2- 2senxcosx] = [ (senx/cosx +1) / (senx/cosx – 1) ]^2
(senx+cosx)^2/ (senx-cosx)^2 = ([ (senx+cosx)/(senx-cosx) ]^2
los cuadrados se van y queda finalmente la siguiente igualdad :
(senx+cosx) / (senx-cosx) = (senx+cosx)/(senx-cosx)
Gracias por elegir nuestra plataforma. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Gracias por pasar por aquí. Nos esforzamos por proporcionar las mejores respuestas para todas tus preguntas. Hasta la próxima. Gracias por visitar Revelroom.ca. Sigue regresando para obtener las respuestas más recientes e información.