Bienvenido a Revelroom.ca, donde puedes obtener respuestas rápidas y precisas con la ayuda de expertos. Nuestra plataforma de preguntas y respuestas te conecta con expertos dispuestos a ofrecer información precisa en diversas áreas del conocimiento. Conéctate con una comunidad de expertos dispuestos a ayudarte a encontrar soluciones a tus preguntas de manera rápida y precisa.

"Tenemos a 720 Cº el siguiente equilibrio: SO3 <--> SO2 + 1/2 O2 (todos gases).
A una presión de 0,25 atm, el SO3 se encuentra disociado en un 69%. Calcula las presiones parciales de cada gas en el equilibrio i los valores de Kp i Kc."

No entiendo como se debe hacer este problema solo con esos datos, he tenido que considerar que el volumen es de 1 L, aunque también he pensado en considerar que reacciona 1 mol de SO3 i da 1 mol de SO2 i 0'5 mol O2. 
Por favor díganme como hacerlo sin tener que considerar ningún dato.

Sagot :

Para hacer el problema vamos a suponer que los moles iniciales de [tex]SO_3[/tex] son [tex]n_0[/tex]. Al tener en cuenta la disociación, en el equilibrio nos quedarán:

[tex]SO_3: n_0(1 - \alpha)[/tex]
[tex]SO_2: n_0 \alpha[/tex]
[tex]O_2: \frac{n_0 \alpha}{2}[/tex]

Podemos calcular la presión parcial de cada uno de estos componentes de la mezcla si sumamos los moles en el equilibrio que hay, es decir, sumamos esas cantidades que están en función de los moles iniciales y tenemos: [tex]n_T = n_0(1 + \frac{\alpha}{2})[/tex].

Las fracción molar de cada especie se determina dividiendo los moles en el equilibrio por los moles totales. A partir de ahí podemos determinar las presiones parciales de cada elemento en el equilibrio:

[tex]P_{SO_3} = \frac{n_0(1 - \alpha)}{n_0(1 + \frac{\alpha}{2})}\cdot P_T = \frac{0,31}{1,345}\cdot 0,25\ atm = \bf 5,76\cdot 10^{-2}\ atm[/tex]

[tex]P_{SO_2} = \frac{n_0 \alpha}{n_0(1 + \frac{\alpha}{2})}\cdot P_T = \frac{0,69}{1,345}\cdot 0,25\ atm = \bf 0,13\ atm[/tex]

[tex]P_{O_2} = \frac{n_0 \frac{\alpha}{2}}{n_0(1 + \frac{\alpha}{2})}\cdot P_T = \frac{0,345}{1,345}\cdot 0,25\ atm = \bf 6,24\cdot 10^{-2}\ atm[/tex]

Ahora podemos calcular el valor de K_P:

[tex]K_P = \frac{P_{SO_2}\cdot P^2_{O_2}}{P_{SO_3}} = \frac{0,13\cdot (6,24\cdot 10^{-2})^2}{5,76\cdot 10^{-2}} = \bf 8,79\cdot 10^{-3}\ atm^{1/2}[/tex]

Sabemos que la relación entre las constantes de equilibrio es: [tex]K_P = K_C(RT)^{\Delta n}[/tex]. Despejando y sustituyendo obtendremos:

[tex]K_C = 8,79\cdot 10^{-3}\cdot (0,082\cdot 993)^{-1/2} = \bf 9,74\cdot 10^{-4}\ M^{1/2}[/tex]
Agradecemos tu tiempo. Por favor, vuelve cuando quieras para obtener la información más reciente y respuestas a tus preguntas. Esperamos que esto te haya sido útil. Por favor, vuelve siempre que necesites más información o respuestas a tus preguntas. Revelroom.ca, tu sitio de confianza para respuestas. No olvides regresar para obtener más información.