Descubre respuestas a tus preguntas en Revelroom.ca, la plataforma de Q&A más confiable y eficiente para todas tus necesidades. Únete a nuestra plataforma de preguntas y respuestas y conéctate con profesionales dispuestos a ofrecer respuestas precisas a tus dudas. Explora miles de preguntas y respuestas proporcionadas por una comunidad de expertos en nuestra plataforma amigable.
Sagot :
Al ser un lanzamiento vertical hacia arriba, la velocidad inicial y la aceleración de la gravedad tienen sentido contrario. Vamos a considerar que la aceleración gravitatoria es negativa.
El cuerpo lanzado irá disminuyendo su velocidad hasta alcanzar su altura máxima. En ese instante la velocidad será nula. Veamos qué tiempo transcurre hasta ese momento:
[tex]v = v_0 - gt\ \to\ 0 = v_0 - gt\ \to\ t = \frac{v_0}{g}[/tex]
El tiempo que obtengamos será el tiempo de subida:
[tex]t_s = \frac{24,5\frac{m}{s}}{9,8\frac{m}{s^2}} = 2,5\ s[/tex]
Si despreciamos rozamientos, el tiempo que tarda en subir el objeto es el mismo que tardará en caer hasta la posición inicial, por lo tanto, el apartado b) tiene como respuesta: [tex]t = 2\cdot 2,5\ s = \bf 5\ s[/tex]
La altura máxima la podemos calcular sustituyendo el tiempo de subida en la ecuación:
[tex]h_{m\'ax} = h_0 + v_0t - \frac{1}{2}gt^2\ \to\ h_{m\'ax} = 68,6\ m + 24,5\frac{m}{s}\cdot 2,5\ s - 4,9\frac{m}{s^2}\cdot 2,5^2\ s^2 = \bf 99,22\ m[/tex]
Para determinar la velocidad con la que llega al suelo vamos a considerar el punto de altura máxima. En ese punto la velocidad del objeto es cero y comienza a caer, es decir, lo podemos considerar como una caída libre, en la que la velocidad de caída tiene el mismo sentido que la gravedad, por lo que ambos serán positivos:
[tex]v^2 = v_0^2 + 2g\cdot h_{m\'ax}\ \to\ v = \sqrt{2\cdot 9,8\frac{m}{s^2}\cdot 99,22\ m} = \bf 44\frac{m}{s}[/tex]
Vamos a determinar el tiempo que tarda en caer desde la altura máxima y, sumándolo al tiempo que tardó en llegar a esa altura, tendremos el tiempo total. Seguimos considerando una caída libre, como en el apartado anterior:
[tex]v = v_0 + gt\ \to\ t_c = \frac{v}{g} = \frac{44\frac{m}{s}}{9,8\frac{m}{s^2}} = 4,5\ s[/tex]
El tiempo total que está en el aire será: [tex]t_v = t_s + t_c = (2,5 + 4,5)\ s = \bf 7\ s[/tex]
El cuerpo lanzado irá disminuyendo su velocidad hasta alcanzar su altura máxima. En ese instante la velocidad será nula. Veamos qué tiempo transcurre hasta ese momento:
[tex]v = v_0 - gt\ \to\ 0 = v_0 - gt\ \to\ t = \frac{v_0}{g}[/tex]
El tiempo que obtengamos será el tiempo de subida:
[tex]t_s = \frac{24,5\frac{m}{s}}{9,8\frac{m}{s^2}} = 2,5\ s[/tex]
Si despreciamos rozamientos, el tiempo que tarda en subir el objeto es el mismo que tardará en caer hasta la posición inicial, por lo tanto, el apartado b) tiene como respuesta: [tex]t = 2\cdot 2,5\ s = \bf 5\ s[/tex]
La altura máxima la podemos calcular sustituyendo el tiempo de subida en la ecuación:
[tex]h_{m\'ax} = h_0 + v_0t - \frac{1}{2}gt^2\ \to\ h_{m\'ax} = 68,6\ m + 24,5\frac{m}{s}\cdot 2,5\ s - 4,9\frac{m}{s^2}\cdot 2,5^2\ s^2 = \bf 99,22\ m[/tex]
Para determinar la velocidad con la que llega al suelo vamos a considerar el punto de altura máxima. En ese punto la velocidad del objeto es cero y comienza a caer, es decir, lo podemos considerar como una caída libre, en la que la velocidad de caída tiene el mismo sentido que la gravedad, por lo que ambos serán positivos:
[tex]v^2 = v_0^2 + 2g\cdot h_{m\'ax}\ \to\ v = \sqrt{2\cdot 9,8\frac{m}{s^2}\cdot 99,22\ m} = \bf 44\frac{m}{s}[/tex]
Vamos a determinar el tiempo que tarda en caer desde la altura máxima y, sumándolo al tiempo que tardó en llegar a esa altura, tendremos el tiempo total. Seguimos considerando una caída libre, como en el apartado anterior:
[tex]v = v_0 + gt\ \to\ t_c = \frac{v}{g} = \frac{44\frac{m}{s}}{9,8\frac{m}{s^2}} = 4,5\ s[/tex]
El tiempo total que está en el aire será: [tex]t_v = t_s + t_c = (2,5 + 4,5)\ s = \bf 7\ s[/tex]
Gracias por elegir nuestra plataforma. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Esperamos que nuestras respuestas te hayan sido útiles. Vuelve cuando quieras para obtener más información y respuestas a otras preguntas que tengas. Regresa a Revelroom.ca para obtener más conocimientos y respuestas de nuestros expertos.