Revelroom.ca está aquí para ayudarte a encontrar respuestas a todas tus preguntas con la ayuda de expertos. Obtén respuestas detalladas a tus preguntas de una comunidad dedicada de expertos en nuestra plataforma. Únete a nuestra plataforma para obtener respuestas fiables a tus interrogantes gracias a una amplia comunidad de expertos.

 calcular el volumen del solido que se encuentra limitado por el paraboide Z=x al cuadrado + y al cuadrado y el plano=4 ( sugerencia .use cordenadas cilindrica) con su prpocedimiemnto por favor

Sagot :

RVR10
Calcular el volumen del solido que limitado por el paraboloide: [tex]z= x^{2} +y^{2}[/tex]
 y el plano: z = 4
Usando coordenas cilindricas tenemos: 
[tex]x=rcos \alpha [/tex] ; [tex]y=rsen \alpha [/tex] ; [tex]z=z[/tex]
Luego:
           
 [tex]z= x^{2} +y^{2}[/tex]
            [tex]4= (rcos \alpha)^{2} +(rsen \alpha)^{2}[/tex]
            [tex]4= r^{2}[/tex]
            [tex]r= 2[/tex]

Luego :  r ∈ [0; 2] y [tex] \alpha [/tex] ∈ [tex][0; 2 \pi ][/tex]  ...(Ver el gráfico, Fig 2)

Del gráfico( Fig.1) :   [tex] x^{2} +y^{2} \leq z \leq 4[/tex]
                               [tex]r^{2} \leq z \leq 4[/tex]

Ademas se sabe que el Jacobiano de las Coor. Cilindricas es: r

Entonces: [tex]V= \int\limits^{2 \pi }_0 { \int\limits^2_0 { \int\limits^4_{r^{2}} {r} \, dz } \, dr } \, d \alpha [/tex]

Resolviendo las integral Triple:
[tex]V= \int\limits^{2 \pi }_0 { \int\limits^2_0 { \int\limits^4_{r^{2}} {r} \, dz } \, dr } \, d \alpha [/tex]

[tex] = \int\limits^{2 \pi }_0 { \int\limits^2_0 {r(4-r^{2})} \, dr } \, d \alpha [/tex]

[tex]= \int\limits^{2 \pi }_0 { \int\limits^2_0 {(4r-r^{3})} \, dr } \, d \alpha[/tex]

[tex]= \int\limits^{2 \pi }_0 {{(2r^{2}- \frac{r^{4}}{4})|^{2}_{0}} \, d \alpha[/tex]

[tex]= \int\limits^{2 \pi }_0 {(2(2)^{2}- \frac{(2)^{4}}{4})} \, d \alpha[/tex]

[tex]= \int\limits^{2 \pi }_0 {4} \, d \alpha[/tex]

[tex]= 4( \alpha )|^{2 \pi }_{0}[/tex]

[tex]= 4( 2 \pi -0)[/tex]

[tex]= 8 \pi [/tex]

Por tanto el Volumen del solido limitado por el Paraboloide: [tex]z= x^{2} +y^{2}[/tex] y el plano: z=4, es:
                             [tex]V= 8 \pi[/tex]
    
      


View image RVR10