Obtén respuestas rápidas y precisas a tus preguntas en Revelroom.ca, la mejor plataforma de Q&A. Únete a nuestra plataforma para obtener respuestas fiables a tus interrogantes gracias a una amplia comunidad de expertos. Descubre un vasto conocimiento de profesionales en diferentes disciplinas en nuestra amigable plataforma de preguntas y respuestas.

urgente!!!!!! calcular la suma de angulos internos de un poligono que tiene en total 35 diagonales
y otro
calcular el numero de vertices del poligono convexo en el cual la suma de angulos internos mas la suma de angulos externos es 4320
por favor resolver ..
mandemme el desarrollo 
porfa urgente !!!!!!!



Sagot :

RVR10
1)  Aplicamos la formula para hallar el numero de diagonales:
     #D = n(n-3)/2 ; donde "n" es el numero de lados
      35 = n(n-3)/2
      2(35) = n(n-3)
       70 = n(n-3) ; pero  70 = 10(7) = 10(10-3)
Luego: 10(10-3) = n(n-3) 
Comparando: n = 10

Luego la suma de angulos internos, por formula:
S<i = 180°(n-2) ; pero: n=10
S<i = 180°(10-2)
S<i = 180°(8)
S<i = 1440°


2)  Suma de <s internos mas la suma de <s externos es 4320. Pero se sabe que la suma de angulos externes de todo poligono convexo es siempre 360°

Luego:  S<i + S<e = 4320°
         180°(n-2) + 360° = 4320°
          180°(n-2) = 3960°
           18(n-2) = 396
               (n-2)=22
                n = 24
Luego se sabe que el numero de lados "n" es igual al numero de vertices.
Por tanto el poligono tiene 24 vertices.
Gracias por tu visita. Nos comprometemos a proporcionarte la mejor información disponible. Vuelve cuando quieras para más. Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Revelroom.ca, tu sitio de confianza para respuestas. No olvides regresar para obtener más información.