Obtén respuestas rápidas y precisas a todas tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Descubre un vasto conocimiento de expertos en diferentes disciplinas en nuestra completa plataforma de preguntas y respuestas. Encuentra soluciones detalladas a tus preguntas con la ayuda de una amplia gama de expertos en nuestra amigable plataforma de preguntas y respuestas.

Se
lanza un cuerpo verticalmente hacia arriba con una velocidad inicial de 100
m/s, luego de 4 s de efectuado el lanzamiento su velocidad es de 60 m/s.

a)
¿Cuál es la altura máxima alcanzada?.

b)
¿En qué tiempo recorre el móvil esa distancia?.

c)
¿Cuánto tarda en volver al punto de partida desde que se lo lanzo?.

d) ¿Cuánto tarda en alcanzar alturas de 300 m y 600 m?.


Sagot :

(a) Lo primero es identificar ante qué problema estamos, en este caso es un tiro vertical. Luego, cuando el objeto alcance la altura máxima la velocidad del mismo será cero y luego comenzará a caer.
Nuestras ecuaciones son

[tex]y = v_{o}t-5\frac{m}{s^{2}}t^{2} \\ v_{f} = v_{i} -10\frac{m}{s^{2}}t[/tex]

Como dijimos que la velocidad va a ser cero en la altura máxima entonces podemos poner eso y luego despejar el tiempo, este tiempo es el momento en el que la pelota llego a su altura máxima.

[tex]v_{f} = v_{i} -10\frac{m}{s^{2}}t\\ 0 = 100\frac{m}{s} -10\frac{m}{s^{2}}t\\ t=\frac{100\frac{m}{s}}{10\frac{m}{s^{2}}} = 10s[/tex]

ahora que sabemos el tiempo podemos reemplazarlo en la primera ecuación para obtener la altura

[tex]y = v_{o}t-5\frac{m}{s^{2}}t^{2} \\ y =100\frac{m}{s}10s-5\frac{m}{s^{2}}(10s)^{2}\\ y = 500m[/tex]

(b)
El tiempo es el que acabamos de calcular, 10s

(c)
Nosotros tomamos el nivel 0m en el punto de partida, entonces la habrá vuelto cuando la altura vuelva a ser nuevamente 0. Entonces si miramos la primera ecuación vemos que podríamos igualar a 0

[tex]0 = 100\frac{m}{s}t-5\frac{m}{s^{2}}t^{2} [/tex]

esto que nos quedo no es nada mas ni nada menos que una cuadrática. El tiempo que buscamos lo hallamos la fórmula de bascara

[tex]\frac{a^{+}_{-}\sqrt{b^{2}-4ac}}{2a}[/tex]

t=20s

(c)
Como vimos en el punto (a), la altura máxima es de 500m, entonces no podemos calcular el tiempo que tarda en alcanzar 600m ya que no llega a esa altura.

luego para saber en qué momento alcanza la altura de 300m solamente igualamos la primera ecuación a 300m y lo pasamos para el otro miembro, nuevamente tenemos una cuadrática. Al igual que en el anterior punto debes usar la fórmula de bascara.